ALASKA REGION RESEARCH VESSEL (ARRV)

Design Review Meeting February 2003

Key Topics

- Open Water Test Results
- Radiated Noise Test Results
- Balancing The Design
- Laboratory Arrangements
- Science Equipment Outfit
- Construction Cost Estimates
- Design Schedule
- Seward Facilities
- Community Outreach

Outboard Profile

Particulars of Propulsion System Alternatives

FACTOR	AZIPOD	ROLLS-ROYCE US355 Z-DRIVE AC	ROLLS-ROYCE US305 Z-DRIVE AC
Rated Power – ABS A1 Ice Rated (KW)	2150	2800	2145
Required Power (KW)	2150	2150	2150
Margin on Required Power (%)	0.0%	23.2%	-0.2%
Propulsion Unit Weight (LT)	102	106	57
Buoyancy (LT)	25.6	0	0
Other Propulsion Drive Weights (LT)	19.5	42.4	42.4
Total Weight (LT)	95.9	148.4	99.4
Weight Increase (LT)	0	52.5	3.5
Net Buoyancy Per Lineal Foot Length (LT/FT)	14.6	14.6	14.6
Required Additional Length (FT)	0	3.60	0.24

Dimensions

•	Length, Overall 2	226'-0"
•	Length, Waterline	200'-0"
•	Beam, Maximum	52'-0"
•	Depth, Hull	28'-0"
•	Draft, Design Waterline	18'-0"
•	Freeboard, Main Deck	10'-0"

<u>Capacities - Consumables</u>

		4	<u>/</u>		000	
0	$\vdash \mid \mid \triangle \mid$			\aleph	1 11 11	21
		ı		$oldsymbol{arphi}_{oldsymbol{I}}$	000	<u>ul</u>

- Potable Water 4,300 gal
- SW Ballast 200,000 gal
- Provisions 60 days
- Holding Capacity 24 hours

Capacities - Science

		\sim $^{\prime}$
\ CIONCO	Berths	1/6
		/ ()
00101100		• ~ ~ ~

- Deck Working Area 2,700 ft.²
- Science Storage Volume 8,000 ft.³
- Science Storage Load 100 LT

<u>Performance</u>

· ·	- <mark>- </mark>	l e e e e e e e e e e e e e e e e e e e	<u> </u>	1 1
			/	1/10
			/	K I 📏
peed,				

- Speed, Cruising 12 kts
- Endurance 45 days
- Installed Power 5,750 hp

Tasks Suggested At September Committee Meeting

- Baseline Noise Survey
 - ✓ R/V Revelle, 21 November 2002
 - ✓ Noise Control Engineering (NCE)
- Independent Cost Analysis
 - ✓ By IMCL
- Develop Science Outfit Description/Costs
 - ✓ Dale Chayes
 - √ Tom Smith

Model Test Results: Speed vs. Power

Model Test Results: Motions in SS 5

Characteristic	V = 0 kts Beam Seas	V = 12 kts Head Seas	V = 12 kts Follow'g Seas	V = 6 kts Follow'g Seas	Criteria
Vertical Acceleration Bow Midship Stern	0.08 g 0.07 g 0.07 g	0.02 g 0.01 g 0.02 g	0.19 g 0.09 g 0.14 g	0.14 g 0.05 g 0.11 g	0.20 g 0.20 g 0.20 g
Horizontal (Lateral) Acceleration High Bridge Deck Mid Main Deck Low Tank Top	0.06 g 0.05 g 0.04 g				0.10 g 0.10 g 0.10 g
Roll Angle (RMS Value)	3.62°				3.00°
Pitch Angle (RMS Value)		1.03°	2.86°	2.89°	1.50°
Relative Motion (RMS Value) Bow Baltic Room Door Aft Working Deck, Starboard* Aft Working Deck, Port * Wave side in beam seas	1.15 ft 4.20 ft 3.12 ft 2.26 ft	2.49 ft 1.05 ft 1.61 ft 0.95 ft	8.27 ft 1.18 ft 2.66 ft 1.90 ft	7.81 ft 1.58 ft 1.94 ft 1.44 ft	

Model Test Results: Lateral Accelerations in SS 5

Intering Anti-Roll Tank Considerations

- Can <u>not</u> be arranged in double hull
 - ✓ Extensive structure required for ice-strengthened hull results in excessive damping of fluid in tank
 - Existing fuel tank spaces would need to be used with resultant loss of fuel capacity
- Requires approximately 90+ long tons of liquid
 - ✓ Approximately 20% of fuel deadweight capacity
- Only marginal improvement in motions
- Tank elimination removes ability to easily heel in ice

Current Design Constraints

- Cost
 - o Minimize
 - ✓ Principal Dimensions
 - ✓ Power
- Vessel Principal Dimensions
 - o Length Limited by pier facility and cost
 - o Draft Limited by operational area
 - o Beam Limited by resistance considerations
- Ice Capability
 - o Defined by operational requirements
 - o Defines minimum power requirement
- Endurance
 - o Defines fuel deadweight requirement

Main Deck Arrangement Modifications Suggested by WHOI

WHOI SUGGESTED MODS

Project Design Schedule

