
Replacement Human Occupied Vehicle

DESSC Update

December 9, 2007

Outline

- RHOV Management Team
- Personnel Sphere Updates
- Vehicle Updates
- Vehicle Cost Drivers
- Integrated Sphere and Vehicle Schedule

Changes to the Management Team

Program Manager

Tom Lewis

Naval Sea Systems Command 1983 - 2007

- Special Operating Forces Undersea Mobility Office
- Deep Submergence Program Office
- Submarine Safety and Quality Assurance Division
- TRIDENT Submarine Program

Assistant Program Manager

Anthony Tarantino

STS International Inc. 2006 - 2007

• In water Security Systems

Woods Hole Oceanographic Institution 2000-2006

DSV Alvin Operations Group

Bruker Federal Systems Inc. 1994-2000

- Production/Final Test /Support Group
- Technical Transfer Team
- Prototype Service Group

Replacement HOV Update Personnel Sphere Progress

- 5-6 Sep 2007: Southwest Research Institute (SwRI) submitted Detailed Design Review (DDR) for RHOV personnel sphere
- The design was reviewed and accepted by ABS and received concurrence by NAVSEA
- Subcontracts in place:
 - Ladish Forge (forging)
 - STADCO (machining and welding)
 - Bodycote Inc. (heat treatment and stress relief)
 - ABS America (certification)
- Titanium ingots delivered, fabrication phase started!

Replacement HOV Update SwRI Personnel Sphere

Final Design based on NADAC/RHOC/DESSC input

Three 18-inch forward viewports
Two 13-inch side viewports

Overlapping Viewing Area

Replacement HOV Update Vehicle Contracting

8 June 2007: Lockheed Martin (LM) awarded contract for vehicle design and fabrication

Contracting Methodology

- Collaborative effort to develop scope of work, specs, and cost estimates
- Allows both parties to develop a clear understanding of the requirements
- Will reduce risk to contractor and mitigate potential cost overruns

Contract Structure

Two Phase Contract

- Preliminary Design and Detailed Cost Estimate of Vehicle (CLIN 1)
- Detailed Design, Fabrication, and Test of Vehicle (CLIN 2)

In order to close CLIN1, LM must provide detailed costing for CLIN 2 six weeks after completion of Preliminary Design Review (PDR), at which time price negotiations begin.

LOCKHEED MARTIN

Based on the cost estimate, WHOI/NSF has the option to execute CLIN 2 or cancel contract.

Key Events

2007

0			
0	J	U	e

27 June - 1 July

24 - 25 July

15 - 17 October

13 - 15 November

Ongoing

Vehicle contract executed

LM engineers observed operations during *Atlantis* engineering cruise

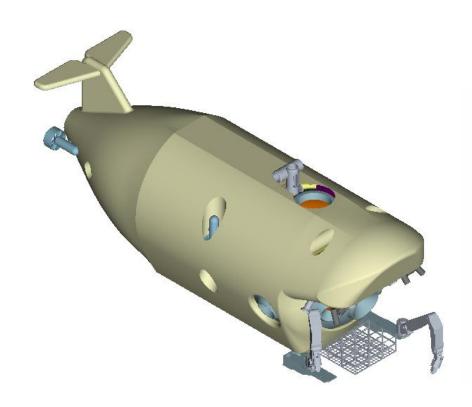
System Requirement Review / System

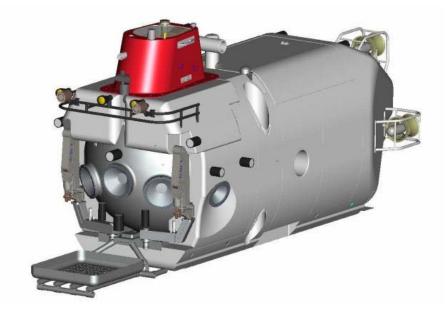
Design Review conducted at LM

Design Team meeting with Alvin Pilots

Preliminary Design Review

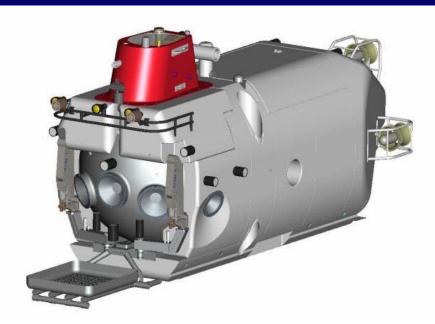
WHOI-LM Technical Exchange





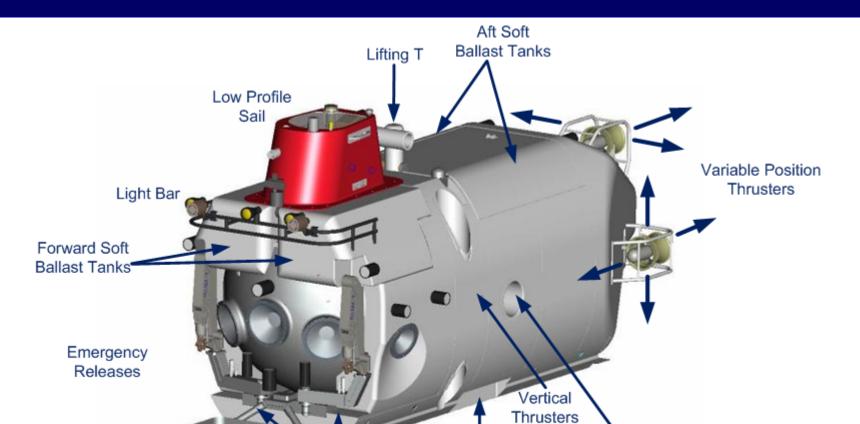
Replacement HOV Update LM / Vehicle

Concept vs. PDR



Replacement HOV Update Vehicle Characteristics

- 43,419 lbs air weight (heaviest state)
- 24' L x 7.5' W x 11.0' H
- Descent time to 2,500m = 73 min
- 7-8 hr bottom time (2,500m)
- 6 thruster configuration
- Movable manipulator mounts



- Flat top and bottom surfaces
- Low profile sail
- Compatible with current A-Frame
- Limited ship modifications
- Maintain Atlantis/Alvin launch & recovery procedures

Replacement HOV Update Vehicle Arrangement

Weight Dropper

Well

Movable Manip.

Mounts

Sample Basket

Lateral

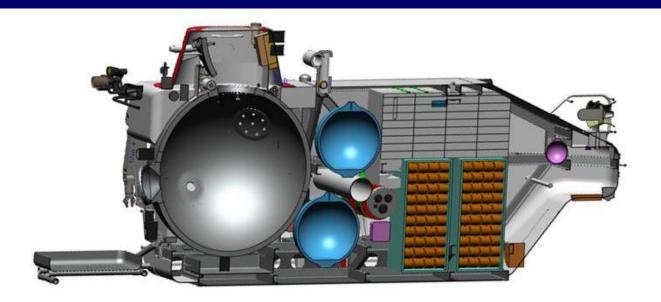
Thrusters

Replacement HOV Update Vehicle Systems

Soft Seawater Ballast System

- 4 separate tanks provide extra buoyancy for surface stability
- Pitch Trim System
 - 2 independent moveable weights
 - +/-10° pitch trim

Port and Starboard Architecture


- Eliminates single critical path
- Increases reliability

Main Hydraulic System

- Up to 8 science functions
- Backup for VB system valve actuation

LOCKHEED MARTIN

Replacement HOV Update Vehicle Systems (cont.)

- Battery Distribution System
 - Li-based battery technology
 - 2 independent battery tanks
- Variable Ballast System
 - Dual motor/pump combination
 - Backup motor to drive main hydraulic system pump

- Flotation Foam
 - Primary buoyancy
 - 250 cubic feet
 - Profiling Sonar
 - Reson SeaBat
- RDI Doppler Velocity Profiler
 - DVLNav

Replacement HOV Update Sphere Ergonomics

- Ergonomic design in accordance with US standards where possible (1988 US Army or NASA-STD 3000)
- Volume and interference checks done with three 95th percentile males
- "Reach limits" defined by 5th percentile female
- Adjustable controls
- Observer seating will provide optimized view and better support than pads

Replacement HOV Update Specification Comparison

	Alvin	RHOV
Depth	4,500 m	6,500 m
Sphere Volume	144.2 ft ³	170.8 ft ³
External Science Payload	275 lbs	400 lbs
Internal Science Payload	6,630 in ³ 19" rack space	12,300 in ³ 19" rack space
Max Speed (fwd)	2 kts	3 kts
Max speed (lateral)	Minimal lateral ability	0.5 kts
Max Speed (vertical)	30 m/min	48 m/min
Trim Angle	+/- 7.5 deg	+/- 15 deg
Positioning Control	Manual w/ auto heading	Auto heading, DP, track and following control

Replacement HOV Update Power Comparison

	Alvin	RHOV
Chemistry	Lead Acid	Lithium
Dive Time	9 hrs (typical)	10.5 hrs
Bottom Time	5-6 hrs	7.5 hrs
Lifetime Cycles	400 total	2,000 total
Maintenance Cycle	60	No scheduled maintenance
Available Energy /Dive	30 kW-Hrs	100 kW-Hrs

Lead acid battery designed to meet RHOV requirements would exceed 10,000 lbs and 70 ft³

Cost Drivers

Power Consumption

Battery is a custom application: as power increases, battery capacity and weight increase

Weight

300 ft³ of syntactic foam required at a total cost for raw material of \$675,000, with additional costs for shaping, bonding and testing

Engineering

ABS classification and Non Recurring Engineering (NRE) can be very costly

Replacement HOV Update Cost Improvements

Battery

- Non-COTs (commercial off the shelf) solution
- Sizable non-recurring engineering charges
- Weight and size driver

Variable Ballast

- Power consumption (battery)
- Overall weight (foam)
- ABS classification impact

Replacement HOV Update **Batteries**

Design to 3-yr, 600 cycle vs. 10-yr 2000 cycle solution

Pros

- Take advantage of advances in battery technology
- Reduce energy requirement (de-rating factor)
- Reduce size and weight
- Decrease initial costs

Cons

Increased life-cycle costs

Evaluate vehicle power requirements

Variable Ballast

Switch to a smaller capacity VB system and use drop weights for descent/ascent

Pros

- Maintain mid-water capabilities
- Increase safety, minimize risk, and reduce ABS requirements
- •Simplifies system and reduces weight and power consumption
- Cross-deck Alvin seawater pump

Cons

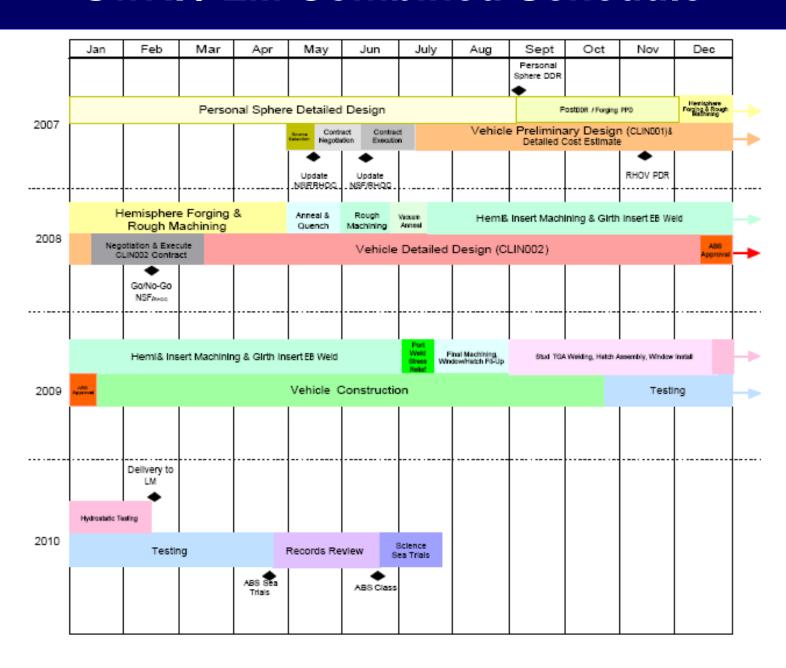
•Will require use of expendable ballast (similar to *Alvin*)

Trade study underway by LM on cost, weight, power implications

Replacement HOV Update Path Forward

Evaluate detailed cost estimate for design and fabrication

- Present cost estimate to RHOC/NSF, 20-21 Feb 2008
- Proceed to CLIN2



SwRI / LM Combined Schedule

