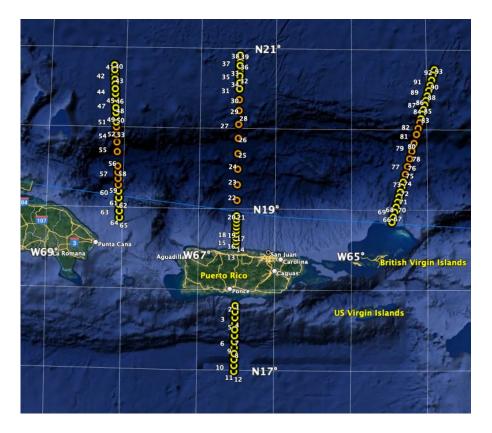
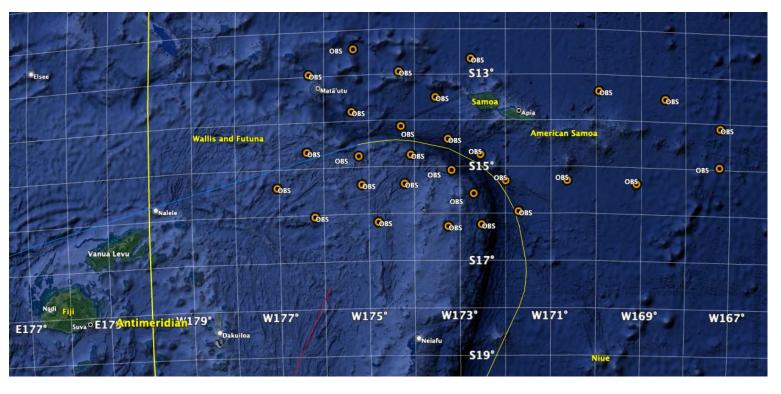


- General Update since Dec. 2022
- Instrument Requests
- Instrument Numbers and Types
- MSRI-funded (2021) Instrumentation
- MSRI Proposal (2023) for Active-Source OBS
- OBSIC Data Metrics
- Rapid Response
- 2024/2025 OBSIC Schedule

OBSIC Cruises 12/01/2022 – 12/06/2023

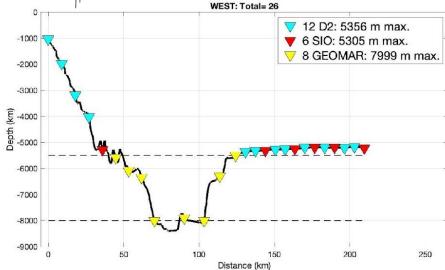
- Dec 2022: Cayman-Rise Deployment (40 SIO SPOBS deployed for 6+ months; *R. Parnell-Turner*)
- Jan/Feb 2023: OHANA Recovery (25 SIO BBOBS deployed for 15 months; *G. Laske*)
- Mar/Apr 2023: Galapagos Plume-Ridge Deployment (53 WHOI BBOBS deployed for 15 months; E. Hooft)
- Apr 2023: NESMA Deployment (3 WHOI SPOBS deployed for 2+ months; *M. Ballard*)
- June 2023: NESMA Recovery (*M. Ballard*)
- June/Jul 2023: Cayman-Rise Recovery (*R. Parnell-Turner*)
- Aug/Sept 2023: Blake Plateau (Active Source, WHOI/SIO; 39 SPOBS; 71 drops, *H. Van Avendonk*)
- Aug/Sept 2023: Axial Seamount (Recover/Redeploy 10 SPOBS; 5 BBOBS; W. Wilcock)
- Nov/Dec 2023: Puerto Rico (Active Source, WHOI/SIO; 31 SPOBS; 69 drops, *P. Canales*)
- Nov/Dec 2023: Tonga-Samoa Deployment (30 SIO BBOBS for 18 months, *S. Wei*)

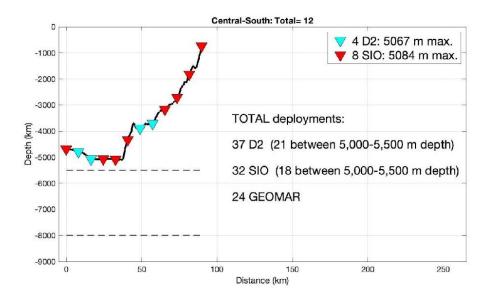


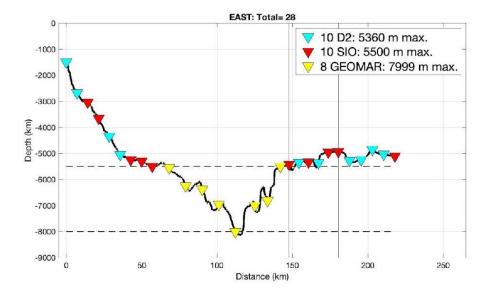

Ongoing OBSIC Cruises 2023

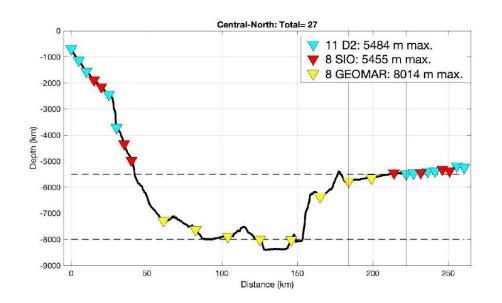
Canales Puerto-Rico Trench (Active Source) 11/20/2023 – 12/13/2023

Wei Tonga-Samoa Interaction (Deployment) 11/24/2023 – 12/21/2023 WHOI/SIO; 31 SPOBS; 69 drops R/V Langseth; San Juan/San Juan


SIO; 30 BBOBS for 18 months R/V Thompson; Apia/Apia






B

Puerto Rico Trench Experiment

GEOMAR Short-Period OBS: Deployable to 8,000+ m

Data Submissions

- OHANA (*G. Laske*); Network Code: 8Q: 2021-2023
- Cayman Rise (*R. Parnell-Turner*); Network Code: 9R: 2022-2023
- NESMA (*M. Ballard*); Network Code: 3A: 2023
- Axial Seamount (Wilcock) and Blake Plateau (Van Avendonk) data sets are under review by Navy

OBSIC Formal Instrumentation Requests (01/01/2023–12/05/2023)

# of short-period OBS requested	Total # of OBS deployments requested	Experiment Location
52	52	Western North Atlantic
52	52	Western North Atlantic

Requests for *short-period OBS* to support active-source experiments

# of short-period OBS requested	Data recording duration requested (months)	Experiment Location	
20	12	Central North Atlantic	

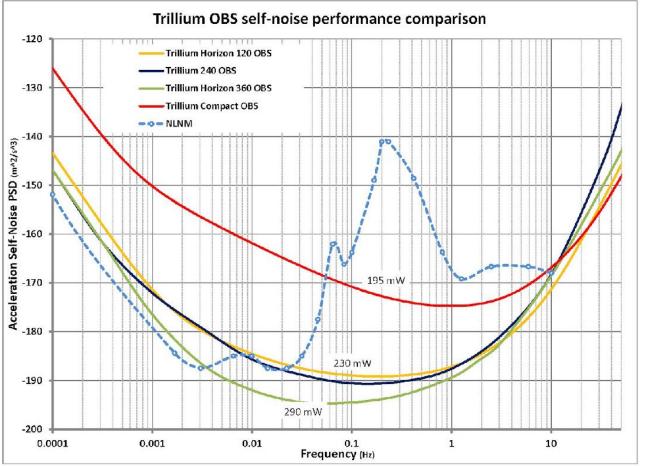
Requests for *short-period OBS* to support active-source shooting and earthquake monitoring experiments

# of broadband OBS requested	Data recording duration requested (months)	Experiment Location
10	10	Indonesia
7	12	Eastern Central Pacific
30	12	Gulf of Mexico
63	12	Eastern North Atlantic
15	12	Mediterranean

Requests for *Broadband OBS*

# of strong-motion OBS requested	Data recording duration requested (months)	Experiment Location
5/5/5/5	12/12/12/12	Western Central Atlantic

Requests for Strong-Motion OBS



Current OBSIC Fleet

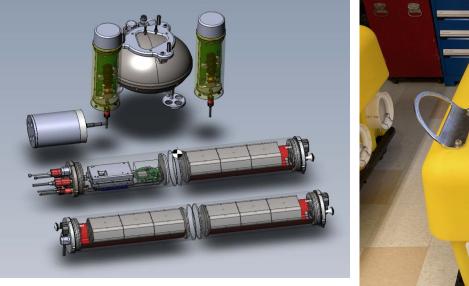
	OBS Type	Count
• 25 SPOBS	Short-Period OBS (WHOI "D2"): 4.5 Hz geophone; hydrophone; Quanterra Q330 data logger; Seascan clock	25
81 BBOBS10 RROBS	Broadband OBS (Glass-Ball Floatation): Nanometrics Trillium Compact seismometer in WHOI leveling system; Differential Pressure Gauge; Quanterra Q330 data logger; Seascan clock	28
• 35 MSRI-funded	Broadband OBS (Glass-Ball Floatation): Nanometrics Trillium Compact seismometer in Nanometrics leveling system; Differential Pressure Gauge; Quanterra Q330 data logger; Seascan clock	5
BBOBS coming	Broadband ARRA OBS (Syntactic Foam Floatation): Nanometrics Trillium Compact seismometer in Nanometrics leveling system; DPG; Quanterra Q330 data logger; Microsemi CSAC	15
SIO OBS Fleet30 BBOBS	Broadband ARRA OBS (Syntactic Foam Floatation): Nanometrics Trillium Compact seismometer in Nanometrics leveling system; DPG; Quanterra Q8 data logger; power-cycled Teledyne CSAC	2
• 50+ SPOBS	Shielded Broadband Abalone OBS with Nanometrics Trillium Compact in Nanometrics leveling system, DPG; Nanometrics Pegasus OBS data logger; Seascan clock	15
	Broadband Angler OBS (Syntactic Foam Floatation): Nanometrics T-240 seismometer in WHOI leveling system; DPG; Q8 data; logger; power-cycled CSAC; power-cycled Teledyne CSAC	10
	Broadband Angler OBS (Syntactic Foam Floatation): Nanometrics T-120 Horizon seismometer in WHOI leveling system; DPG; Q8 data; logger; power-cycled CSAC; power-cycled Teledyne CSAC	6
	Rapid Response OBS (Sercel MicrObs): MEMS accelerometer and hydrophone, rechargeable battery; Glass-ball housing. Under evaluation.	10

New Trillium 120 OBS Seismometer

T-120 OBS

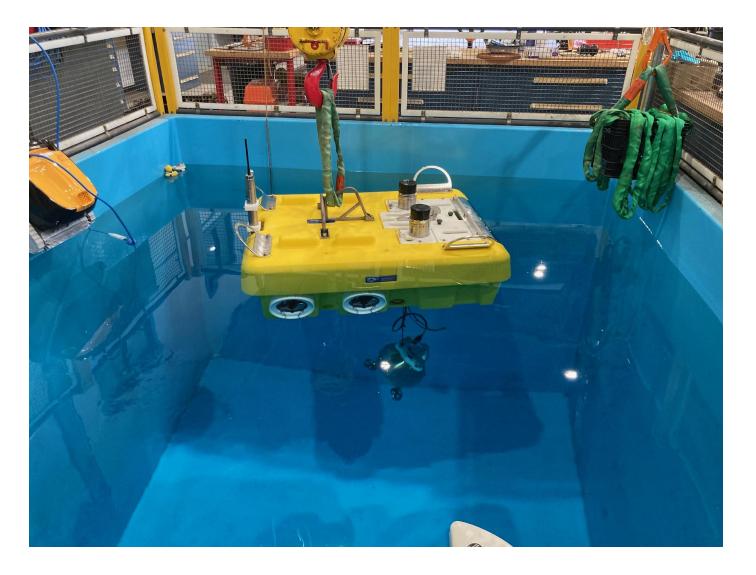
Clip Level: 16.6 mm/s (< 10 Hz); 0.12 g (>10 Hz) Power: 250 mW

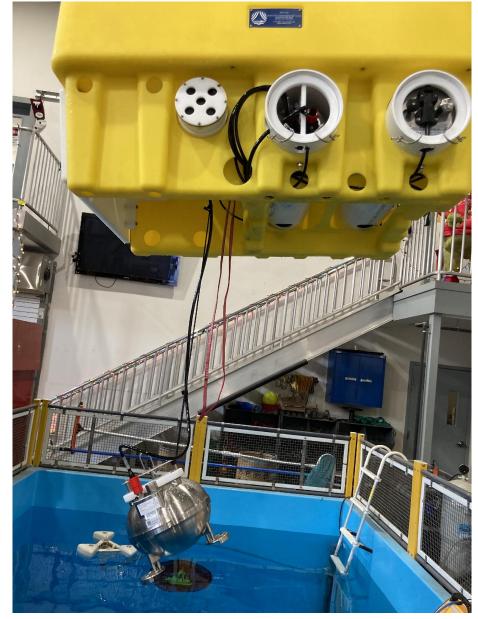
Trillium Compact


Clip Level: 26 mm/s (< 10 Hz); 0.17 g (>10 Hz) Power: 195 mW

2021 MSRI Award to Build 35 Wideband/Broadband OBS

- Now have two prototype OBS in-house. Will deploy both systems in January along with reference systems.
- Now have 35 Nanometrics Pegasus OBS data-loggers and 20 Nanometrics Trillium Compact OBS in house.
 Expecting delivery of 15 Trillium T-120 OBS shortly.
- After the sea trial, the remaining production-run quantities (housings, frames) will be ordered with expected delivery anywhere from 10-24 weeks depending on industry conditions for items such as the Titanium pressure housings.





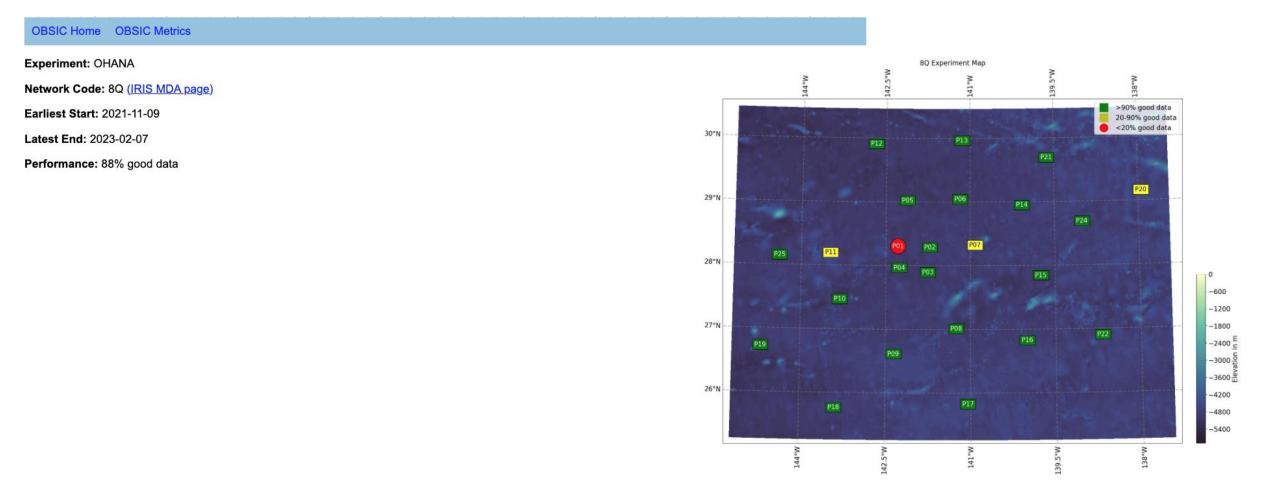
2021 MSRI Award to Build 35 Wideband/Broadband OBS

2023 NSF Program Solicitation: Mid-Scale Research Infrastructure-1

Pre-Proposal Due Date: January 05, 2023 **Mid-Scale RI-1 (M1:DP): Design and Construction of an Active-Source OBS Node Fleet for the U.S. Academic Community** 100 SPOBS; At-Sea Infrastructure

Full Proposal Due Date: May 05, 2023 **Research Infrastructure: Mid-Scale RI-1 (M1:DP): Design and Construction of an Active-Source OBS Node Fleet for the U.S. Academic Community**

Requested Amount: \$9,283,807


120 SPOBS; Prototype Phase; Fleet Management System; Better-Defined At-Sea Infrastructure

DECLINED; October 26, 2023

OBSIC Data Metrics

Experiment Name	Network ID	Year	Status	Good hours, %
Cayman Rise	9R	2023	restricted	92
NESMA	3A	2023	restricted	63
Guerrero Gap	X4	2022	restricted	95
OHANA	8Q	2021	restricted	88
Queen Charlotte Fault	YI	2021	restricted	82
CASIE21 (Cascadia)	YR	2021	open	86
Andreanof Islands	YM	2020	open	100
Gofar Transform Fault	8A	2019	restricted	89
Pacific Array (Old ORCA)	7B	2019	open	80
Bransfield Strait	ZX	2019	open	81
Pacific Array (Young ORCA)	XE	2018	open	56
AACSE	хо	2018	open	74
Hawaii-Emperor Seamounts	ZU	2019	open	97
New England Seamounts	7К	2018	open	96
Hawaii RAPID Response	Z6	2018	open	90
Yellowstone Lake	YL	2017	open	84

Experiment: OHANA

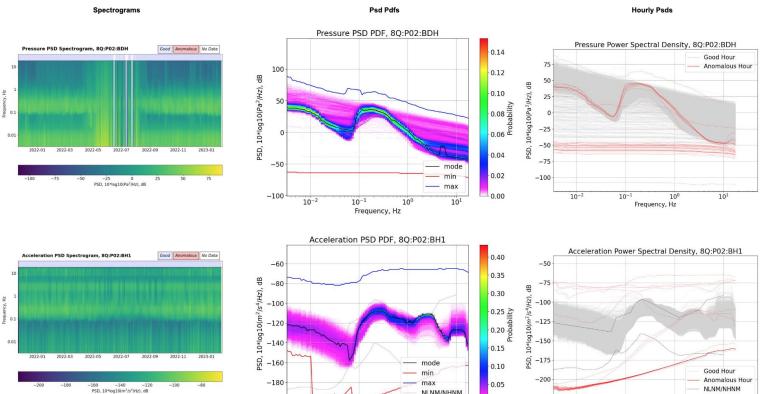
Station	Instrument Type	Elevation	Deployed	Recovered	Orientation	Error	Clock drift	% Good Hours
<u>P01</u>	SIO_LP	-4918	2021-11-12	2023-01-30			N/C	14
<u>P02</u>	SIO_LP	-4820	2021-11-20	2023-02-02	180	0	0.43	98
<u>P03</u>	SIO_LP	-4993	2021-11-20	2023-01-31	185	0	1.10	99
<u>P04</u>	SIO_LP	-4996	2021-11-13	2023-01-30	186	0	0.44	99
<u>P05</u>	SIO_LP	-5053	2021-11-21	2023-02-03	176	0	-0.09	99
<u>P06</u>	SIO_LP	-4974	2021-11-22	2023-02-02	275	0	0.44	99
<u>P07</u>	SIO_LP	-4890	2021-11-22	2023-02-01			1.09	24
<u>P08</u>	SIO_LP	-4894	2021-11-20	2023-01-31	140	0	2.25	99
<u>P09</u>	SIO_LP	-4706	2021-11-20	2023-01-27	9	0	-0.12	99
<u>P10</u>	SIO_LP	-4936	2021-11-12	2023-01-27	257	0	1.19	99
<u>P11</u>	SIO_LP	-4998	2021-11-10	2023-01-29	216	1	-0.06	73
<u>P12</u>	SIO_LP	-4995	2021-11-21	2023-02-03	288	1	-2.63	99
<u>P13</u>	SIO_LP	-4934	2021-11-21	2023-02-04	340	0	-3.41	99
<u>P14</u>	SIO_LP	-4868	2021-11-22	2023-02-05	148	1	0.20	98
<u>P15</u>	SIO_LP	-4942	2021-11-22	2023-02-05	29	0	1.75	99
<u>P16</u>	SIO_LP	-4793	2021-11-25	2023-01-26	250	0	3.72	99
<u>P17</u>	SIO_LP	-1754	2021-11-25	2023-01-26	71	0	0.52	98
<u>P18</u>	SIO_LP	-4876	2021-11-19	2023-01-28	101	0	1.34	99
<u>P19</u>	SIO_LP	-4961	2021-11-09	2023-01-28	100	1	2.65	99
<u>P20</u>	SIO_LP	-4691	2021-11-23	2023-02-07			1.99	24
<u>P21</u>	SIO_LP	-1	2021-11-23	2023-02-04	191	0	1.23	99
<u>P22</u>	SIO_LP	-4869	2021-11-24	2023-01-25	208	0	1.82	99
<u>P24</u>	SIO_LP	-4814	2021-11-23	2023-02-06	248	0	0.08	99
<u>P25</u>	SIO_LP	-5031	2021-11-11	2023-01-29	158	0	0.74	99

OBSIC OBSIC Metrics 8Q Metrics

Experiment: OHANA

Network Code: 8Q (IRIS MDA page)

Instrument Type: SIO_LP


Station Start: 2021-11-20

Station End: 2023-02-02

Performance: 98% good data

Channel	Good hours, %
BDH	95
BH1	99
BH2	99
BHZ	98

Experiment: OHANA Station: P02

-200

10-2

 10^{-1}

Frequency, Hz

NLNM/NHNM

100

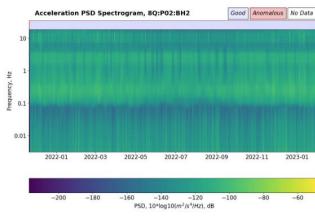
10¹

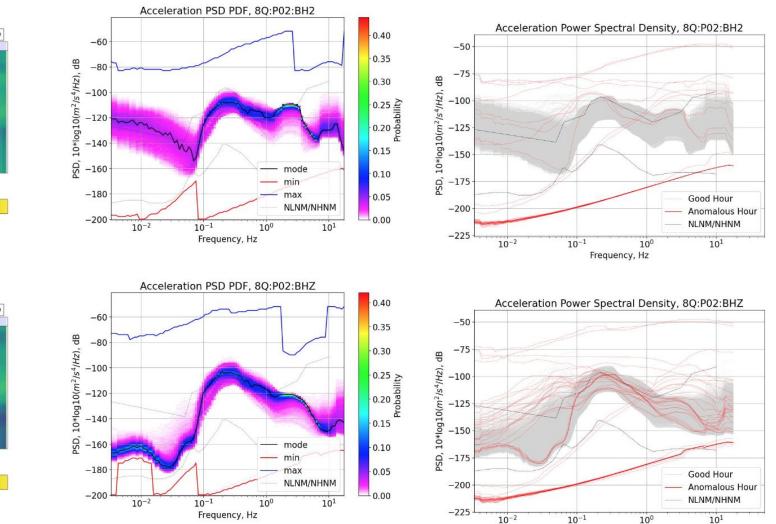
0.00

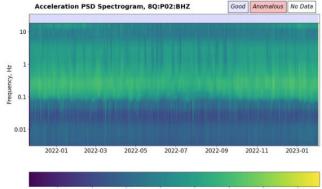
10-2

 10^{-1}

10⁰


Frequency, Hz


10¹


BDH

Experiment: OHANA Station: P02

Frequency, Hz

OBSIC USGS-Funded Rapid Response Capability

- 10 Sercel MicrObs delivered!
- 6,000 m capable (but glass-ball housing!)
- Deployment duration on re-chargeable Li-ion battery: 45 days
- 4-components: 3-axis MEMS accelerometer and hydrophone
- Accelerometer self-compensates for tilt
- Accelerometer low-frequency performance better than a geophone

- Rapid-response only. Not to be used for standard experiments.
- OBS stored in dedicated container, with dedicated clocks, acoustic deck box, computers, etc.
- Protocol still to established but supported events to be decided by USGS and WHOI.

100% Funded by USGS Coastal and Marine Hazards and Resources Program (Nathan Miller, USGS Woods Hole)

OBSIC Cruises 2024

Miller Skilak Lake, (Kenai Penn., AK) May 2024 – May 2025

2 WHOI BBOBS

Hooft Galapagos Plume-Ridge Recovery 06/13/2024 – 07/03/2024

Wilcock Axial Seamount Seismicity Recovery 09/23/2024 – 09/27/2024

R/V Sally Ride; Galapagos/Galapagos

R/V Sally Ride; Newport/Newport

WarrenChain Transform (Active/Passive) Deployment20 SIO SPOBS for 11 months11/16/2024 – 12/31/2024R/V Langseth; Cape Verde/Cape Verde

OBSIC Cruises 2025 (To Be Scheduled)

Naif Cocos Plate Deployment January/February 2025??? 27 WHOI BBOBS for 12 months; R/V Revelle???

Eilon Galapagos Triple Junction Deployment (Year-1) 44 WHOI BBOBS for 15 months; R/V Revelle??? February/March 2025???

Miller Skilak Lake Recovery May 2025

Wei Tonga-Samoa Interaction Recovery (SIO) May/June 2025

Warren Chain Transform Recovery (SIO) July/August 2025

Wiens Matthew Hunter Trench Deployment

20 WHOI BBOBS for 15 months

Abers Northwest New Zealand

20 WHOI BBOBS for 15 months