Discoveries from 3D controlled source imaging offshore New Zealand (NZ3D)

Andrew Gase, Nathan Bangs, Shuoshuo Han, Demian Saffer, Ryuta Arai, Rebecca Bell, Stuart Henrys, et al.

Imperial College London

Northern Hikurangi margin notable for shallow slow slip, tsunami earthquakes, and subducting seamounts

Laura Wallace, 2020

≥50 mm SSE slip

179°E

3D reflection and seismic velocity data can expand our scientific possibilities

Barnes et al., 2020

NZ3D data acquired in early 2018 with R/V Langseth – simultaneous OBS and 3D streamer acquisition with the help of R/V Tangaroa

- 97 JAMSTEC short-period OBS successfully recovered
- Good S/N to ~20 km offset

Arai et al., 2020

NZ3D data acquired in early 2018 with R/V Langseth – simultaneous OBS and 3D streamer acquisition

Arai et al., 2020

- 15 x 60 km² seismic reflection data volume
- 4 x 6 km streamers
- Near IODP drilling sites

Data processed by CGG-Singapore

Figure 7: CGG 2020 new PSDM processing data in depth with final velocity (Subline 502)

Figure 4: CGG 2020 new processing data in depth with final velocity (Subline 502)

Processing Highlights:

- 1. Source/receiver/ghost designature
- 2. 3D multiple suppression
- 3. 3D acoustic full-waveform inversion and reflection tomography (TTI anisotropy)
- 4. 3D pre-stack depth migration

Huge imaging improvement from 2D to 3D

2D data along drilling transect

Huge imaging improvement from 2D to 3D

2D data along drilling transect

NZ3D provides new opportunity to understand nature of subducting crust

IODP Exp. 372B/375 drilled seamount volcaniclastic fan and peak

- Volcaniclastics are altered to water-rich clay.
- Maybe a way to subduct more water?

Barnes et al., 2020

3D reflection and velocity volume reveal low velocity volcanic upper crust

Volcanic cones underlain by cuspate sills and layered intra-crustal reflections

Key structural features: Volcanic ridges (VRs) an incoming plate

Bathymetry from seafloor reflection

Top of volcanic upper crust

Key structural features: Volcanic upper crust is slow outboard of deformation front

Average P-wave velocity in upper 1 km of volcanic crust

Key structural features: Broad low velocity zones disappear upon subduction

Average P-wave velocity in upper 1 km of volcanic crust

V_P vertical function of incoming crust

Normal oceanic crust bounds from Acquisto et al., (2022)

Estimate water content from P-wave velocity

Barnes et al. 2020

Not possible to separate porosity from mineral-bound water with P-wave velocity

Thick volcaniclastics allow for extreme water delivery to subduction zone

Average H₂O vol. in the upper 1 km of volcanic crust H₂O vol. (%) -50 600 40 Inline 400 10 km R 200 2500 Б S • 0 2000 1500 Crossline 1000 0 500

H₂O vertical function of incoming crust

~half of water in upper crust is lost within first 15 km of subduction

Where does the rest of the water go?

- 1. Through upper plate and faults?
- 2. Through subducting plate?

NZ3D – new insights into effects of seamount collision on accretionary wedge

- Long-offset Papaku fault trails ~2 km high seamount
- More even fault development ~10 km south of seamount

Bangs et al. 2023

Seamount collision results in weak-consolidation of trailing sediments

Bangs et al. 2023.

- Low-velocity sediment lens forms in wake of past seamount collision
- Long-lasting low velocities zones

Ample fluid sources in upper and lower plates – may influence aseismic transients

Bangs et al. 2023

NZ3D – lots of opportunities for discovery and integration with other projects

 Joint 3D acquisition of OBS and streamer data highly successful

 Analysis and integration with other datasets ongoing – much more to come

