Pacific ORCA: Science update

Co-authors: Jim Gaherty (Northern Arizona U.) Josh Russell (U. Syracuse) Joseph Phillips (Northern Arizona U.) Anant Hariharan (UCSB) Don Forsyth (Brown U.) Lun Zhang (UC Santa Barbara) Colleen Dalton (Brown U.)

Zach Eilon (UC Santa Barbara)

h..... ACIFIC .R.C.A. OBS Research into Convecting Asthenosphere

Funding: NSF OCE #1658214, #1658491, #2051265, #1658070

MSROC Community Meeting Science Update (pre-AGU 2023)

Science questions - dynamic oceanic LAB

Imaging SSC

Weeraratne et al., 2007

Pacific Array of Arrays

Pacific ORCA experiment

100% instrument recovery

Teleseismic data

Travel time tomography - SSC imaged!

Key observations

- ±2% P-wave velocity anomalies in upper mantle
- Lineations parallel to plate motion + gravity anomalies
- Wavelength 200-300 km
- Depth of strongest anomalies 180-280 km
- 40 Ma Onset age (hmm..)

Eilon et al., 2022

Vs to Gravity

- Collapse tomography to 2.5-D (along rolls)
- Collapse gravity variations down to 1-D (along rolls)
- Predict 1-D grav. from 2-D tomo.
 - Convert from velocity variation to temperature variation (fraught)
 - Convert from temperature to density variation (assume a)
 - Compute surface gravity anomalies (upward continuation)

Velocity, attenuation from surface waves

- Earthquake and ambient noise Rayleigh waves
- Low velocities of Young ORCA upper mantle
- VERY high attenuation $(Q_s \sim 30)$ in confined layer
- Observations not reconcilable with simple cooling - if temp. alone

Russell et al., in prep

Russell et al., in prep

DI 13B–0032 (Mon PM)

Russell et al., in prep

DI 13B-0032 (Mon PM)

Emerging story

- Highly dynamic small scale convective system
- Thin, dynamically crucial asthenosphere (damp, melt-laden, deformed)
- Rheological gradients

Emerging story

- Is this area typical?
- Early for SSC
- Extra warm?
- Extra wet?

SW phV and anisotropy

Phillips et al., in prep

b.

Joey Phillips

Period (s)

SW anisotropy

Phillips et al., Russell et al., in prep

Travel time tomography - more mysteries

Key observations

- ±0.5s P-wave travel time variations
- ±1s S-wave travel time variations
- Consistent across frequency bands
- Coherent back-azimuthal patterns

Hariharan et al., in prep

-20

-32

-33

-34

-35

-36

-37

-38

Travel time tomography - more mysteries

 \blacktriangleright ±2% δ Vs variations

Perhaps lineations Perhaps APM-parallel

Hariharan et al., in prep

Plug - upcoming experiment OBSIC

Galapagos triple-junction MORfest

Emphasis	Deploy	Recover	Stations
CNR, PCR	01/2025	~03/2026	A&B 44 BBOBS
CNR, TJ	~03/2027	~05/2028	C&D 42 BBOBS

Science party on each cruise

- I Jr faculty/postdoc co-Chief Sci.
- 3-6 watch standers
- Bonus science opportunities...

Questions?

Pacific ORCA experiment - data issues

Science questions - dynamic oceanic LAB

- How do plates cool?
- What causes seismic NVGs (if not the plate)?
- What gives rise to off-axis, non-age-progressive volcanism?
- What causes elongated freeair gravity anomalies?
- Does lithosphere chemically exchange with –10° asthenosphere?
- How does lithosphere move over asthenosphere?

-150°

0°

Filtered Gravity (mGal)

-130° -120° -140° -110°

Gravity and Topography

- De-spike (remove seamounts)
- 80km gaussian convolution filter
- ► 10⁶-10¹ m gaussian bandpass filter

ORCA FAA (mGal)

ORCA Differential Bathymetry (m)

-130° –132°

Gravity and Topography

Free Air Coherence Normalized cross spectrum measure of similarity of gravity and bathymetry fields averaged over wavenumber bands

Free Air Admittance Ratio of power in gravity vs. bathymetry spectra (2-D Fourier) averaged over wavenumber $Z_{FA}(k) = \frac{G_{FA}(k)}{H(k)}$ bands

