From resource exploration to tackling tectonophysics: Understanding our dynamic Earth with marine EM

Christine Chesley MSROC pre-AGU Meeting 2023 10 December 2023

Email me at: christine.chesley@whoi.edu

Sunday Funday

I. Basics of Marine EM Geophysics

- II. A Smattering of Recent Work
 - Resources A.
 - Offshore freshened groundwater
 - Hydrocarbons (e.g. gas and gas hydrates)
 - Tectonophysics B.
 - Mid-ocean ridges
 - Subduction Zones

MSRCC Gofar Oceaniga Fransfelber Faulds

RESOURCES

EM Data Constrain Electrical Resistivity

Resistivity (1/conductivity)

- Highly sensitive to water and melt in rock
- Porosity = dominant control on resistivity of oceanic crust and marine sediments

Complements other geophysical data

TECTONOPHYSICS RESOURCES

Passive Source Method – Magnetotellurics

MARINE EM GEOPHYSHICS

Natural magnetotelluric (MT) source field induces secondary fields in the ground undred km

RESOURCES

Active Source Method—Controlled-Source EM

MARINE EM GEOPHYSHICS

RESOURCES

Active Source Method—Controlled-Source EM

• Can also tow receivers behind source for higher resolution of sediments and very shallow subsurface (a few 10s – a few 100s of m)

Surface-towed receivers

RESOURCES

Deep-towed receivers

MARINE EM GEOPHYSHICS

TECTONOPHYSICS

Marine EM for Resource Exploration

MARINE EM GEOPHYSHICS

RESOURCES

(Note - freshwater is resistive)

MSROC pre-AGU

Monting

MARINE EM GEOPHYSHICS

RESOURCES

Gas Hydrate Mapping

MARINE EM GEOPHYSHICS

RESOURCES

Recent Tectonophy GP11A-04 (9:02-9:12) using Marine EM Tuesday

MARINE EM GEOPHYSHICS

- MR21A-07 (9:38-9:48)
- Wednesday V34A-01(16:02-16:12)
- Thursday V43B-0165 and V43B-0177 T44A-03 (16:22 - 16:33)

RESOURCES

Mid-Ocean Ridge Melts

Partial Melt Chamber at the fast-spreading EPR

MSROC pre-AGU

Monting

MARINE EM GEOPHYSHICS

Deep, asymmetric mantle upwelling at the ultraslow-spreading Mohns Ridge

RESOURCES

EM at Subduction Zones: Alaska-Aleutians

MSROC pre-AGU Monting

MARINE EM GEOPHYSHICS

Deep hydration of slab mantle can provide fluids to forearc plate interface.

RESOURCES

Outer rise bending faults

RESOURCES

Seamounts are sponges

Seamounts can hold large volumes of fluid that may influence shallow slow slip events

MSROC pre-AGU Monting

MARINE EM GEOPHYSHICS

RESOURCES

Seamounts are sponges

Seamounts can hold large volumes of fluid that may influence shallow slow slip events

MSROC pre-AGU Monting

MARINE EM GEOPHYSHICS

RESOURCES

TECTONOPHYSICS

Gofar Oceanic Transform Fault

Shameless plug (Session V003):

Thursday poster hall 2:10–6:30 PM V43B-0165 and V43B-0177

Friday talk 10:30-10:40 **V52A-02**

MARINE EM GEOPHYSHICS

RESOURCES

TECTONOPHYSICS

Curious Earthquake Rupture Barrier Zone at Gofar

Monting

 Observations from 2008 OBS deployment revealed...

- Larger (Mw \geq 5.0) EQs don't occur in middle segment of fault
- Lots of smaller EQs that happen abnormally deep
- Rupture propagation appears to be prevented by a "barrier

MARINE EM GEOPHYSHICS RESOURCES

Gofar Oceanic Transform

Investigating Properties of the GOFAR Fault

- 14 AUV Sentry dives
- 47 OBS recoveries **MSROC** pre-AGU Monting

• mid Jan - early Mar 2022

~50 days on R/V Thompson

MARINE EM GEOPHYSHICS

RESOURCES

Gofar Oceanic Transform

Resistivity of GTF-4

Intersection w/fault-parallel profile NORTH ~Depth to AMC ~Base of Extrusives 3 4 5 ~Base of **Upper Crust** Depth (km) 6 8 9 -~Moho 10 -Older, colder

More resistive 11 -12 -15 -10 Chesley et al., in prep **Distance from Fault Valley (km)**

Seismicity from Gong and Fan 2022 are relocated 2008 EQs w/in 250 m of profile pre-AGU

MARINE EM GEOPHYSHICS

Christeson et al., 2019; Hussenoeder et al., 2002; Detrick et al., 1993;

- 3 conductive to south anomalies:
 - Deep (C_d)
 - Shallow (C_s)
 - Pipe-like (C_n)

RESOURCES

SOUTH

Resistivity (Ω-m)

2000

1000

100

-10

0.5

Younger,

warmer

More conductive

10

15

Gofar Oceanic Transform

Resistivity of all Fault-Crossing Profiles

 No clear difference in resistivity structure b/w barrier & rupture zones

- North (older) side of fault is more resistive than south (younger)
- Shallow (1.5–15 Ω -m) & deep conductor (2–10 Ω-m) EAST onyounger plate MARINE EM GEOPHYSHICS

RESOURCES

Gofar Oceanic Transform

Is seawater-filling porosity realistic?

- $C_{p} (\phi \le 5\%; \text{ ave } 3\%) \text{ okay}$
 - Intense damage & fluid infiltration
- $C_{s} (\phi \le 30\%; \text{ ave } 13\%) \text{very}$ high
 - hydrothermal circulation?
 - remnant thermal/melt anomaly?
 - heavy metal deposits? WISHUU PIC-AUU

Monting

MARINE EM GEOPHYSHICS

RESOURCES

Gofar Oceanic Transform

0.25 0.160.10 0.06 2 0.04 0.025 0.016

Is seawater-filling porosity realistic? NO

• $C_d (\phi \le 16\%; \text{ ave } 9\%)$ high for lower crust

- No corresponding LVZ (Roland et al., 2012)
- Saline brines may be responsible
 - What would drive asymmetric brine formation?

MARINE EM GEOPHYSHICS

RESOURCES

Gofar Oceanic Transform

22

0.25 0.16 0.10 0.06 2 0.04 0.025 0.016

Some possible interpretations for C_d

Scenario 1

- C_d = Low fraction of partial melt and saline brine
 - Suctioned from EPR or other melt source

Some possible interpretations for C_A

Scenario 1

- • $C_d = Low fraction$ of partial melt and saline brine
 - Suctioned from EPR or other melt source
- Scenario 2
- $\bullet C_d =$ saline brine
 - Melt source in the mantle drives fluid flow

MSROC pre-AGU

Monting

Conclusions

• Melt suctioned into OTF domain + enhanced permeability of fault drive localized, deep fluid infiltration in barrier zone

• We image effect of this as lower crustal brines

This may imply that some melt that doesn't escape at the ridge gets carried to transforms and influences fault rheology MARINE EM GEOPHYSHICS Maatina

RESOURCES

Gofar Oceanic Transform

Conclusions

• Melt suctioned into OTF domain + enhanced permeability of fault drive localized, deep fluid infiltration in barrier zone

• We image effect of this as lower crustal brines

This may imply that some melt that doesn't escape at the ridge gets carried to transforms and influences fault rheology MARINE EM GEOPHYSHICS Monting

Thanks for listening! Questions?

Email me at: christine.chesley@whoi.edu

Monting

MSHOC pre-AGU

MARINE EM GEOPHYSHICS

RESOURCES

TECTONOPHYSICS