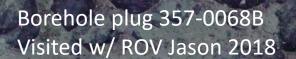
Fluid and volatile sampling at and below the seafloor

Susan Q. Lang

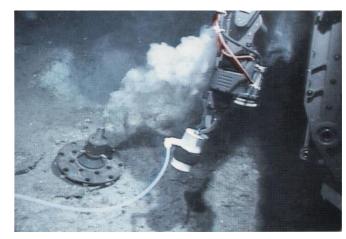


Main points

 Community has developed multiple ways to get high quality samples from seafloor, though takes large effort, variable success

 Legacy boreholes are high value targets; some subseafloor sampling & logging more challenging w/o JOIDES Resolution

Goals of fluid & volatile sampling


- Transfer of heat and elements between crust and ocean
- Geophysical, chemical, biological character of the subseafloor
- Characterizing conditions for subseafloor life

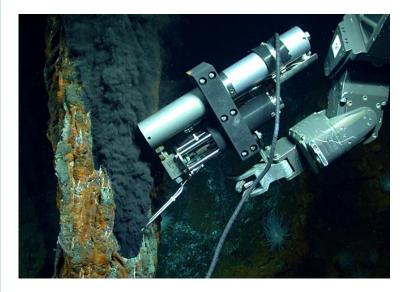
J. Seewald, WHOI/ NSF /ROV Jason/2020 © WHOI

S. Lang, UofSC/ NSF /ROV Jason/2018 © WHOI

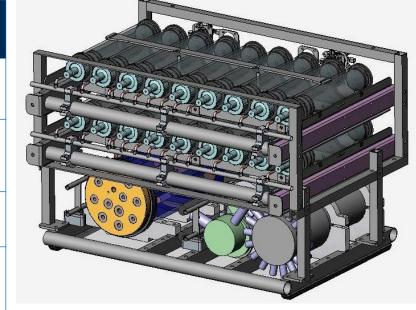
P. Johnson © UW

Challenges of Sampling at the Seafloor

- Intake: cm-scale differences for point sources; seep samplers capture large areas
- Volatile sampling requires maintaining pressure
- Contamination: specialty materials & cleaning needed, and sometimes conflict (organics, trace metals, mbio, etc)


Large volumes sometimes needed

Sampler	fluid volume	collection method Gas tight		in situ filtering & preservation
Major Samplers**	750 mL	syringe	no	no
Gas Tights	150 mL	syringe	yes	no
Isobaric Gas Tight (IGT)	150 mL	syringe	yes	no
Hydrothermal Particle and Fluid Sampler (HPFS)	variable	displacement	foil bags / piston	yes
Mobile Pumping System (MPS)	variable	displacement	foil bags / fluid trap	yes
SUPR	variable	positive pumping	no	yes
Hydrothermal Organic Geochemistry (HOG)	variable	displacement	no	yes
Universal Fluid Obtainer (UFO)**	variable	positive pumping	no	yes

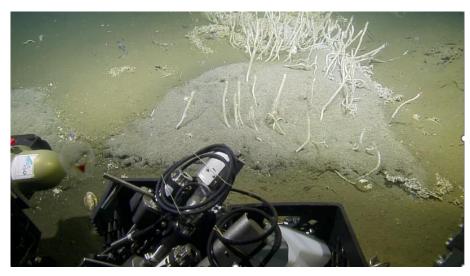

Gas Tight Sampler (Lilley)

Isobaric Gas-Tight Sampler (Seewald)

Sampler	fluid volume	collection method	Gas tight	in situ filtering & preservation
Major Samplers**	750 mL	syringe	no	no
Gas Tights	150 mL	syringe	yes	no
Isobaric Gas Tight (IGT)	150 mL	syringe	yes	no
Hydrothermal Particle and Fluid Sampler (HPFS)	variable	displacement	foil bags / piston	yes
Mobile Pumping System (MPS)	variable	displacement	foil bags / fluid trap	yes
SUPR	variable	positive pumping	no	yes
Hydrothermal Organic Geochemistry (HOG)	variable	displacement	no	yes
Universal Fluid Obtainer (UFO)**	variable	positive pumping	no	yes

^{**}can be requested with deep submergence vehicles

Hydrothermal Particle and Fluid Sampler (Butterfield)



Hydrothermal Organic Geochemistry Sampler (Lang)

Seep samplers

 Large collection areas

Hydrate formation while sampling

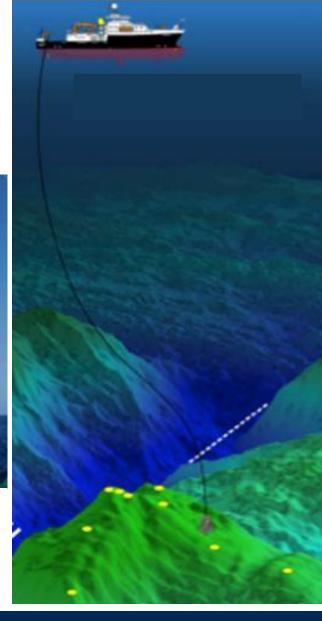
© Schmidt Ocean Institute

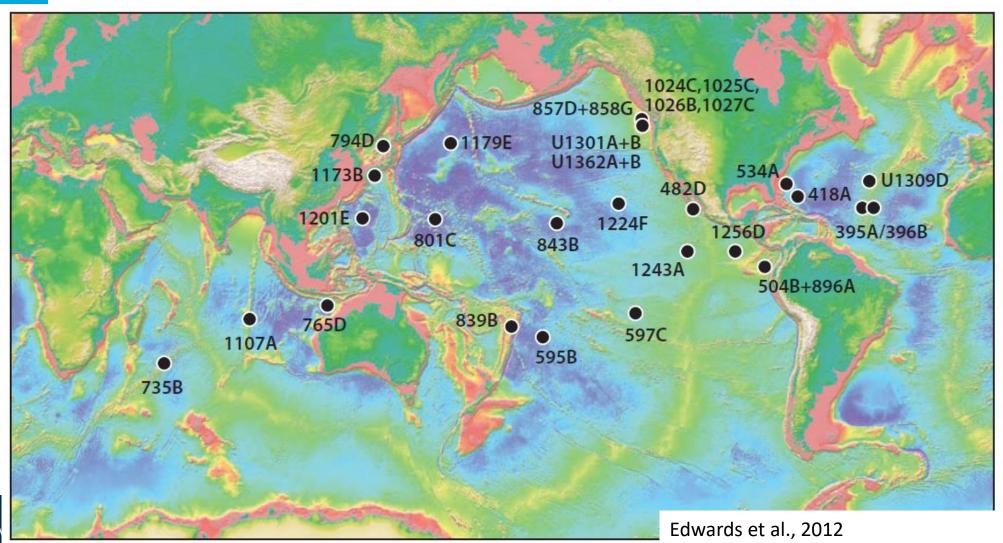
Heated Seep Sampler © Seewald

Sampling below the seafloor

Dedicated drill ship

Joides Resolution


Seabed rock drilling

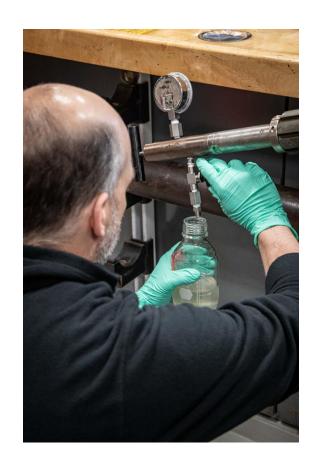

RockDrill II

MeBo

Legacy boreholes



Value of fluid samples from boreholes


 Surface processes overwhelmed by oxygenated conditions, photosynthesis

 Borehole sampling: direct access to the anoxic subseafloor

Borehole fluid samplers: MTFS, Kuster

- Samplers deployed by JR in borehole after drilling
- MTFS: multi-temperature fluid sampler (Wheat et al., 2021)
- Collect 0.5 IL water

Logging boreholes: continuous record

 Measurements: temperature, density, porosity, magnetic susceptibility, sonic velocity...

 Informs: lithology, degree of alteration, orientation of recovered cores, fault locations

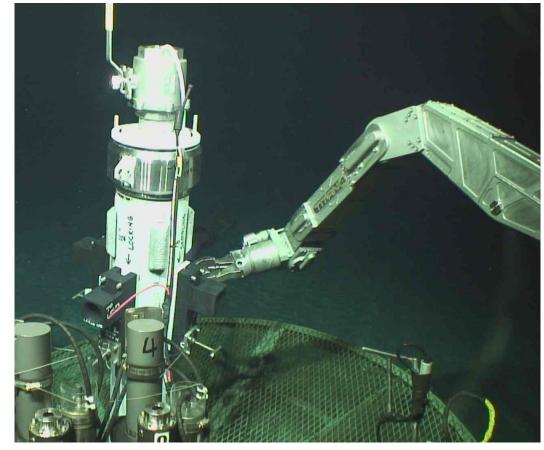
Temperature

Fluid flow pathways

Heatflow

Large scale circulation

What options exist for fluid & logging in legacy boreholes?

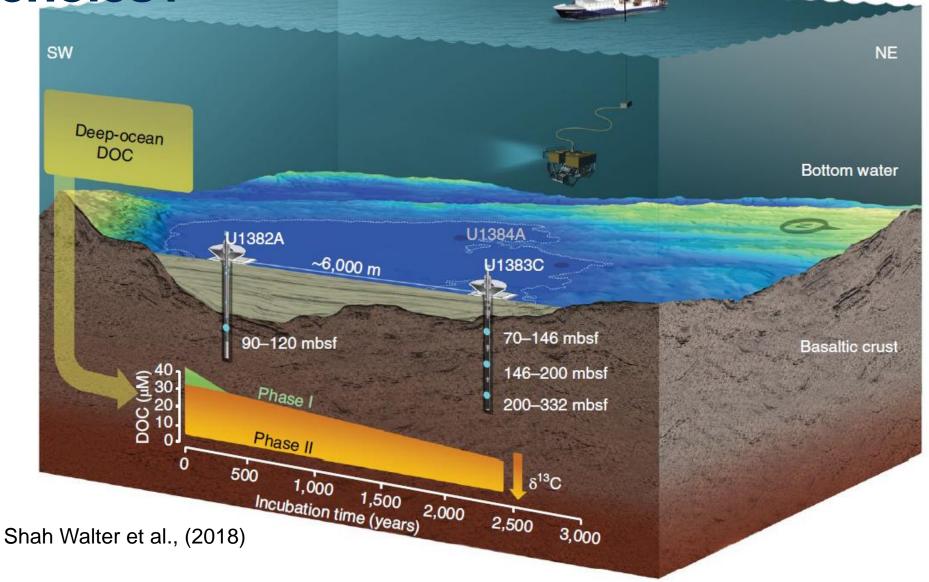


CORKs & CORKlites

- fluids from different depths w/ packers
- cased boreholes
- fluids, incubations, pressure, hydrogeologic (tracer) experiments, other
- may preclude future logging

bottom of screen

199.2 mbsf top of cement 193.9 mbsf
bottom of 10 ¾" casing 210.9 mbsf



C.G. Wheat, U. Alaska/ NSF /ROV Jason/2022 © WHOI

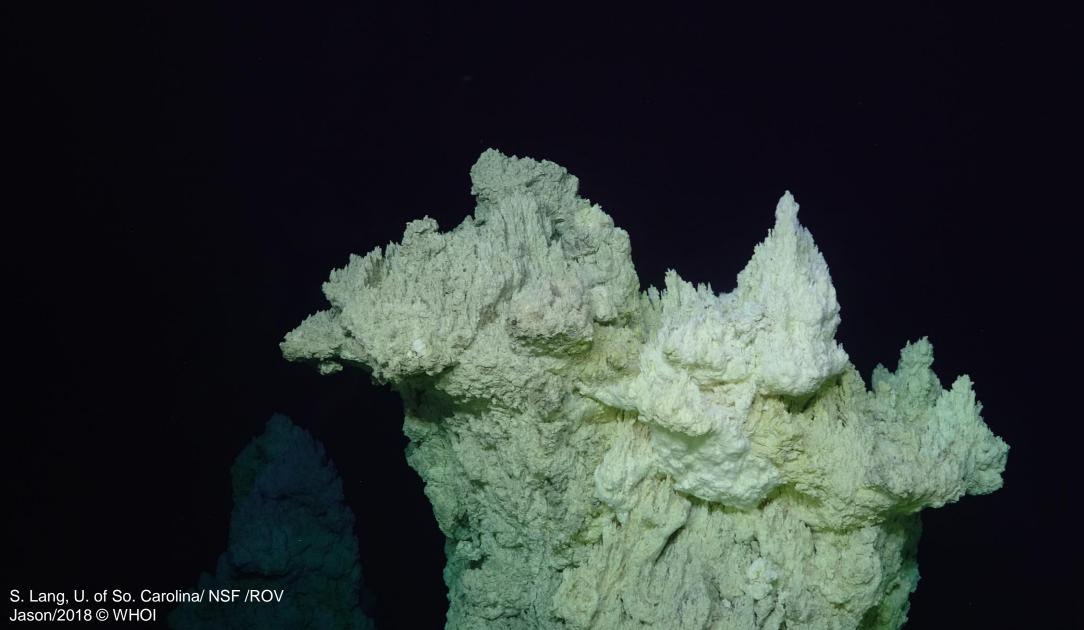
← 152 6 mbsf

What options exist for sampling & logging in

legacy boreholes?



What options exist for logging in legacy boreholes?


INTERNATIONAL PHASE OF OCEAN DRILLING (IPOD)
DEEP SEA DRILLING PROJECT
DEVELOPMENT ENGINEERING
TECHNICAL NOTE NO. 4

June 1984

W. A. Nierenberg, Director Scripps Institution of Oceanography M. N. A. Peterson Principal Investigator and Project Manager Deep Sea Drilling Project Scripps Institution of Oceanography

Thank you

Sampler	fluid volume	#samples per dive	collection method	Gas tight	in situ filtering & preservation	contact
Major Samplers	750 mL	1 per	syringe	no	no	Alvin / Jason groups
Gas Tights	150 mL	1 per	syringe	yes	no	Marvin Lilley
Isobaric Gas Tight (IGT)	150 mL	1 per	syringe	yes	no	Jeffrey Seewald
Hydrothermal Particle and Fluid Sampler (HPFS)	variable	24	displacement	foil bags / piston	yes	David Butterfield
Mobile Pumping System (MPS)	variable	46	displacement	foil bags / fluid trap	yes	Mike Rappe
SUPR	variable	14	positive pumping	no	yes	Chip Brier
Hydrothermal Organic Geochemistry (HOG)	variable	24	displacement	no	yes	Susan Lang
Universal Fluid Obtainer (UFO)	variable	7	positive pumping	no	yes	Alvin / Jason groups