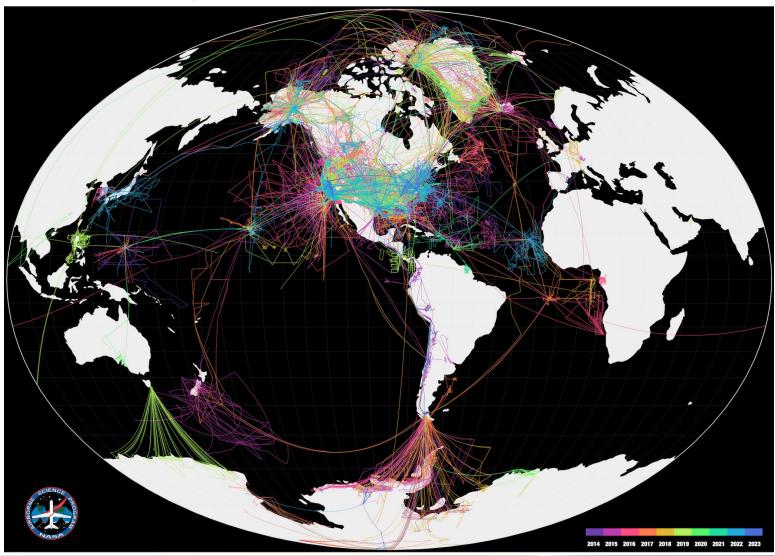
National Aeronautics and Space Administration NASA

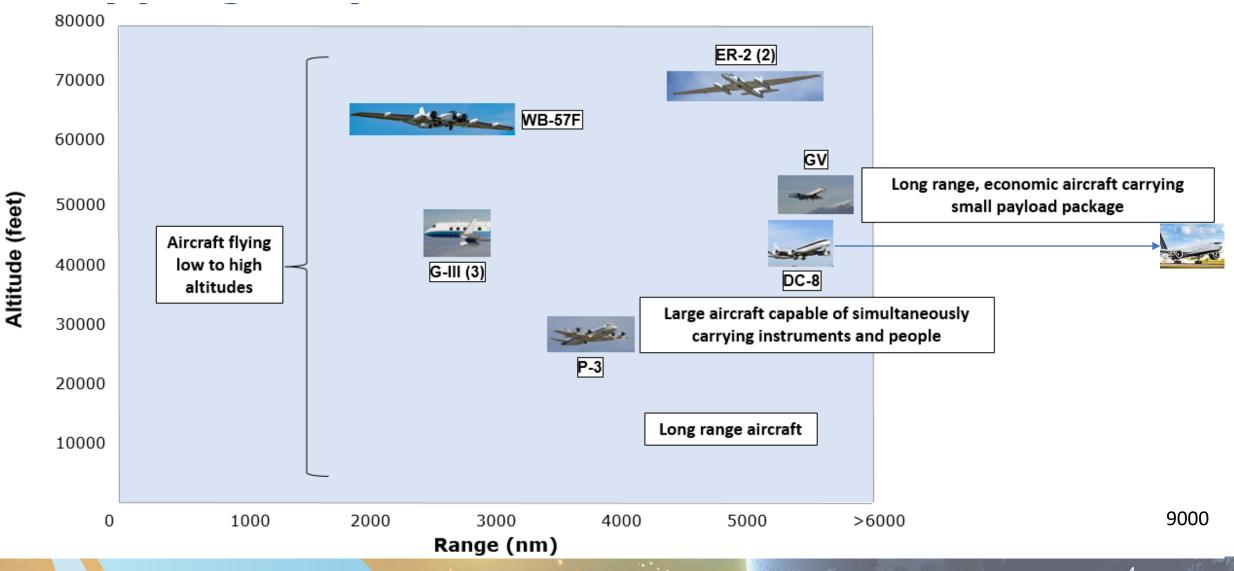
EXPLORE EARTH

A Time of Change for Earth Science Research: B777-200ER

Derek Rutovic NASA Airborne Science Program, Deputy Director 11/1/2023


Airborne Science at NASA, Why?

Scientific


Programmatic

- Make important scientific measurements not possible from satellite or surface-based platforms
- Calibration and validation of satellite remote sensing observations and models
- Develop new remote sensing and in-situ instruments
- Develop early career investigators
- Develop leadership skills in promising early and mid-career investigator

Mission Flight Tracks, 2014 - Present

Airborne Science, Core Platforms

Airborne Science, Core Platforms

5

DC-8 Historical Requirements

- DC-8 acquired to replace the CV 990
- Missions have relied on the DC-8 for the following requirements
 - Heavy Lift enables multiple payloads to provide coincident measurements most often for atmospheric chemistry, weather, and instrument inter-comparisons (ASCENDS)
 - Long range enables measurements across regions/basins to enable process studies over large regions
 - Vertical profiling the long endurance capability enables sampling from the surface to 12km with repeat profiles at various altitudes
 - Onboard operators the ability to host instrument operators allows for adjusting instruments during a mission in addition to enabling science collaboration in real time, backbone support for SARP

So, Why Replace the DC-8?

- With few pilot simulators available and limited spare parts, NASA's Armstrong Flight Research Center suggested that the DC-8 would end operations in 2025
 - Fuel probes, brakes, tires, emergency door slides
- Market research showed viable, affordable, vibrant used aircraft market

How Do You Replace the DC-8?

Independent Analysis of Platform Alternatives NASA Langley Research Center and Analytical Mechanics Associates 2017 - 2018

Large commercial aircraft Military aircraft Fleet of GVs Cost per payload pound per mile

> Best Replacement Option: B767-200ER

National Academies of Science Study Assessed Long Term Need for Long Range Aircraft 2019-2021

"NASA should acquire, maintain, and operate a large aircraft ... to address priority questions developed for the 2017 Earth Science ... Decadal Survey." Budget Approved 2022

8

B777 Replacement Schedule

Dates Completed		3	Q FY2	2	4	Q FY2	2	10	Q FY2	3	2	Q FY2	3	3	Q FY2	3	4	Q FY2	23		1Q FY2	4	2	Q FY2	4
Aircraft Procurement	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Procurement Initialization		\bigstar	4/25	5																					
RFP Development																									
RFP Released			\bigstar	5/16	5																				
Proposal Evaluation/Selection							\star	9/16																	
Aircraft Purchase										\bigstar	12/1	5													
Aircraft Modification																									
Establish Team								1	0/17																
Requirements Development										-	† 1,	/6													
Preliminary Design, In-House																	\bigstar	7/26	6						
Critical Design, In-House																									
Modification, In-House																								_	\rightarrow
RFP Development, Major Mods												\bigstar	2/12												
RFP Released, Major Mods																				\star	10/1	.1			
RFP Evaluation/Selection, Major Mods																									

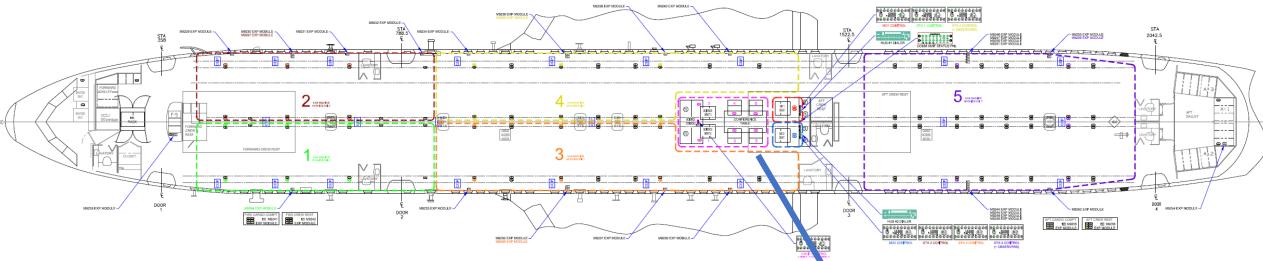
B777 Replacement Schedule

	3	Q FY2	4	4	Q FY2	4	1	Q FY2	5	2	Q FY2	5	3	Q FY2	5	4	Q FY2	5	1	Q FY2	6	2	Q FY2	6
Aircraft Modification (cont.)	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Modification, In-House																								
Modification, Major Mods																								
Major Scheduled Maintenance																								
Aircraft Paint																								

Aircraft Procurement

- B767 vs B777 and the Amazon Prime Air market effect
- Selected a Japan Airlines B777-200ER that was a summer 2020 COVID casualty
 - 4 months from RFP release to contract award
 - 3 months to bring aircraft out of preservation
- Delivered to NASA LaRC on December 15th, 2022

Aircraft Delivery


- Engineering design, analysis, and modification efforts were commencing in parallel with the aircraft procurement process
 - Engineering "Dream Team" assembled from across the Agency to complete "in-house" modifications
 - 4 participating Centers
 - New model of ASP HQ-driven team interleafing with Center airworthiness
 - Modification broken up into two phases
 - "In-House"
 - Vendor modification for structural portals
 - SRR completed January 2023
 - PDRs completed July 2023
 - CDRs ongoing
 - Network and research power completed: modification work is ongoing

Airborne Research Support Capabilities

- 100K lbs of total payload
- 100 scientists and researchers
- Up to 7 nadir portals, 10 window portals, and 2 zenith portals
- Power
 - No break power transfer
 - 115 VAC, 400 Hz single/three phase:
 - 115 VAC, 60 Hz single phase:
 - 28 VDC:

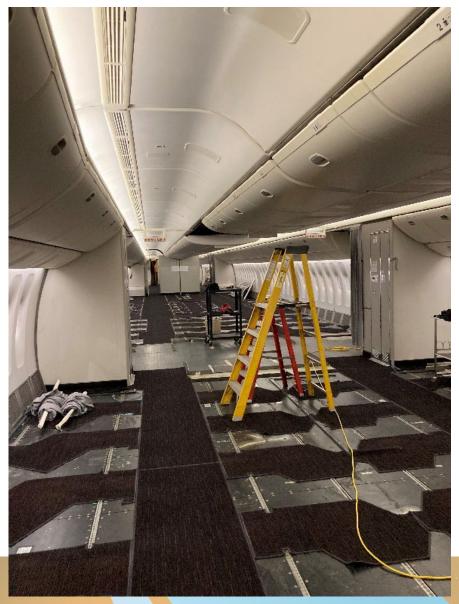
83 kVA maximum 70 kVA maximum 7.8 kW maximum

- 200+ individual Intercom endpoints in the cabin, 6 private chat loops
- RD/NRD-41 dropsonde / AXCTD sonobuoy launcher
- Mission control center
- Network and SatCom, Iridium Certus
 - Planning for Starlink
- Standard suite of DC-8 "state parameters"

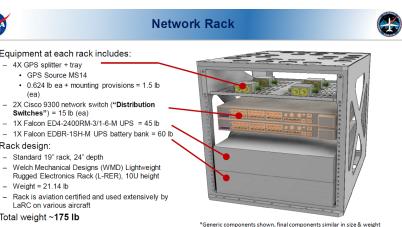
ASA

 Equipment at each rack includes: 4X GPS splitter + tray GPS Source MS14

Switches") = 15 lb (ea)


- Standard 19" rack, 24" depth

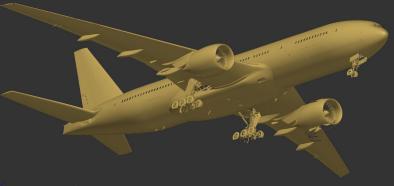
LaRC on various aircraft Total weight ~175 lb

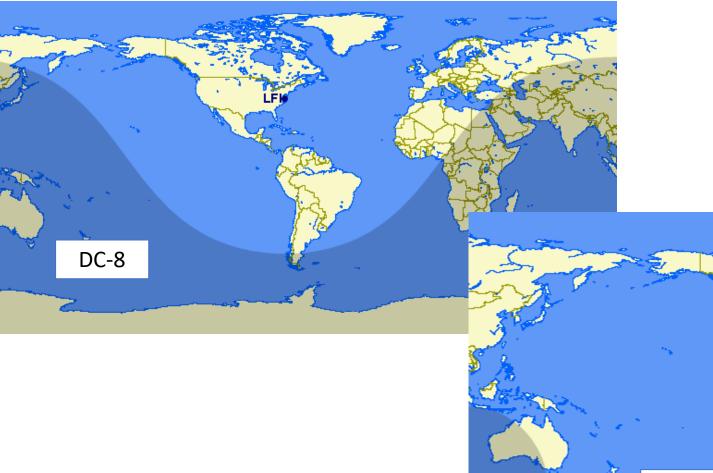

(ea)

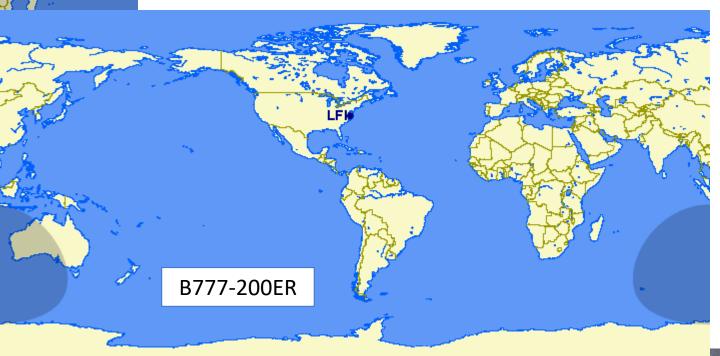
- Weight = 21.14 lb

· Rack design:

*WMD L-RER 10U shown







B777-200ER Performance

B777-200ER Performance

Aircraft	Payload Weight (lbs)	Fuel Load (%)	Range (nmi)	Endurance (hr)
DC-8	50,000*	100	~5000	11
	50,000	55	5400	11.7
B777-200ER	50,000	100	9000	19
	100,000	85	7400	15.6

*Approximate ATom-4 payload weight: instruments, passengers, etc.

- B777-200ER will have unmatched payload and range capability for the airborne research community for decade to come unlocking possibilities that were never achievable before
 - True polar, worldwide platform
 - Can overfly large geographic regions where basing aircraft has been difficult in the past
 - Increased collaboration with international partners with increased payload capacity

