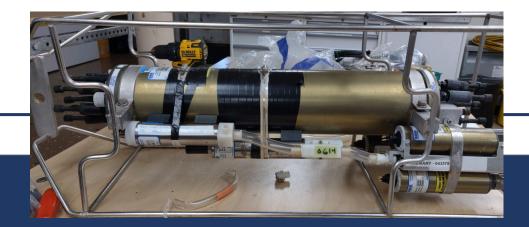


An update on: Developing CTD Best Practices

RVTEC 2024 October 21-25th Portsmouth, New Hampshire

Group Members & Working Group Leads

Rebecca Hudak Rolling Deck to Repository Woods Hole Oceanographic Institute Margaret Archibald: MMA Ryan Anderson: WHOI Susan Becker: UCSD Lynne Butler: URI Taylor Crockford: WHOI Calla Lloyd-lim: NOAA William Dullea: WHOI Dan Fitzgerald: Hawaii Gordon Furey: POMaritime Alexa Gonzales: NOAA Morgan Hudgins: UGA Gabe Matthias: UAF Aaron Mau: UCSD Leah McRaven: WHOI Jessica McLaughlin: UCSD Sara Rivero-Calle: UGA Fernando Santiago-Mandujano: UH Emily Shimada: OSU Peter Shanks: Australian Antarctic Division Aiden Thayer: WHOI Michael Tepper-Rasmussen: WHOI Katie Watkins-Brandt: NOAA



General Best Practice for CTD

- CTD Cast naming convention
 - should be unique, preferably with *CRUISE ID* included where possible
 - RR2301_001
 - AE2319_CTD_001
- CTD data structure
 - raw hex, xmlcon, btl, hdr
 - proc processed data ie (cnv, asc)
 - doc all sensors which are on the CTD package, calibration files & other documentation
- Log file of events (R2R Eventlog)
 - Suggested: deploy; max depth; recover; abort
 - Sensor cleaning, especially when using bleach or TritonX/Tergitol
 - Oxygen sensor (####) swapped out for (####)

Basic Recommended Cleaning

There are several options described by Sea-Bird Application Notes, and are summarized below.

1) Flush the T/C sensors using the Sea-Bird provided syringe. Agitate warm (wrist warm) DI water through the cell in a washing action, forcefully pull the plunger in and out to flush the sensors (this can be accomplished with Tygon tubing and a syringe kit – see Application Note 2D) for 2 minutes.

2) Cleaning chemicals

- a. Bleach For bio-fouling it is extremely effective in controlling growth.
- b. Tergitol For removal of surface and airborne oils ingested into the plumbing.
- c. White Vinegar For minor mineral deposits (5 8% acetic acid).

Bottle Types

What does your vessel use?:

- Niskin Bottles
 - General Oceanics (traditional)
 - OTE (Ocean test equipment)
 - Bullister-style
 - "Wally"
 - ROV/Convertible niskins
 - Van Dorn
- GO-FLO
- Ruttner bottle
- Other?

General niskin (left) vs Bullister-style (right)

Pictured left to right: 10L, GO 1.7L, GO 10L, GO 30L.

Bottle Types Contin.

- Pros and Cons of external vs internal tension
 - Material used especially for internal tension
 - Reasons why internal tension is a good idea

GO-FLO Bottle with external tension

Tier Structure (3 Tiers)

Tier 1

- Small vessel w/ no technician or not primary science objective
- Mar Tech follows all CTD BP for sensor cleaning and storage. The technician can conduct at least one validation method for each sensor.

Tier 2

- More than one tech, science party has little responsibility
- Mar techs trains science party on deployment, recovery, and sensor flushing between casts

Tier Structure Contin.

Tier 3

- Repeat hydrographic line where science party may bring their own CTD and/or the CTD watch. Water samples are collected and analyzed on board. The sensors are calibrated 'in situ'.
- Mar Techs are responsible for training the CTD watch on ship specific needs for CTD deployment and recovery.

Is a tier structure like this useful to the community? Each tier could have an associated decision tree.

What type of Best Practice Document is most beneficial to the Community?

-As much info as possible -Printable appendices

-just the basics -etc.

Question for the Techs!

When do you turn your deck unit on? When do you start acquisition? Does having a LARS deployment change your answer?

Question for the Techs!

What kind of on-ship processing do you use/have available?

Troubleshooting/Issues/Experiences

What have been your experiences with CTDs? Any issues or tips and tricks that you would like to share?

Want to share an Institutional SOP?

Give us your email & we will be in touch!

Questions?

Thank you!

Check out our POSTER!!!

How to install and run Mojolicious CTD plotting routine, available via R2R Github!

