
Ocean Data Tools
https://www.oceandatatools.org
RVTEC 2024 Tutorial

Sealog
● Introduction
● Lingo 101
● System overview
● Backend Services
● Best practices
● Contributing
● Where to from here?

Sealog
● Introduction
● Lingo 101
● System overview
● Backend Services
● Best practices
● Contributing
● Where to from here?

Sealog
● What is it?

● What's special about
it?

Sealog is a general purpose event
logging framework built to
support research vessels and
underwater vehicles.

It provides vessel/vehicle
operators with an event-logging
solution that can be customized to
support the operator’s unique
needs and provide a science party
with a tool that allows them to
design and enforce standardized
documenting procedures and
vocabularies.

Sealog
● What is it?

● What's special about
it?

Sealog uses a server/client
architecture with the server’s
functionality remaining small and
concise.

Ancillary data (sensor, position,
imagery) is stored independently
from event data allowing it to be
added at any time (realtime or post)

Data is added, queried and
exported via the server’s API
allowing multiple data pathways

Sealog
● What is it?

● What's special about
it?

Flexible - the tool doesn’t tell
the user how to log, can be used
with any type of platform.

Define your own event
schemes/vocabularies

Decide what data to associate
with events

Use one of the provided web-ui
clients or write your own.

Build your own custom export
scripts

Sealog
● What is it?

● What's special about
it?

Two client types available:
● Vessel focused
● Vehicle focused

Sealog
● What is it?

● What's special about
it?

Replay and Search events:

Sealog
● What is it?

● What's special about
it?

Custom Exports:

● Export to csv/json from the UI

● Add backend export script to automate
and expand the export process.

[
{

 "event_value": "SAMPLE",
 "event_free_text": "",
 "event_options":
 [
 {
 "event_option_name": "type",
 "event_option_value": "Water"
 },
 {
 "event_option_name": "sample_id",
 "event_option_value": "FKt240902-RW-005-A"
 },
 {
 "event_option_name": "storage_location",
 "event_option_value": "NB1 (5L)"
 },
 {
 "event_option_name": "notes",
 "event_option_value": "Fist sample "
 }
],
 "ts": "2024-09-03T14:05:00.153Z",
 "event_author": "mpf",
 "id": "66d7178c5fe4c2fab0fdaf85"

},

"65750c68825e0fc2f23cf512","FKt231202","S0626","2023-12-10T00:55:04.447Z","OBSERVATION","sergiocambro","ctenophore\n","Other
Organism","biology","uS/cm","3.14","m","2537.5","dbar","2567.44","ppt","34.659","m/s","1499.54","C","1.81","m","2531.77","dbar","25
71.75","ppt","35.128","m/s","1500.05","C","1.81","m","113.53","m","2546.26","deg","47.461","μ mol","112.41","μ mol","131.936","μ
mol","109.821","%","25.42","%","32.89","%","30.393","m","2534.51","ddeg","9.082461","ddeg","-87.095706","deg","15.3","ddeg","9.0835
33","ddeg","-87.096672"
"65750c68825e0fc2f23cf512","FKt231202","S0626","2023-12-10T00:55:04.447Z","OBSERVATION","sergiocambro","ctenophore\n","Other
Organism","biology","uS/cm","3.14","m","2537.5","dbar","2567.44","ppt","34.659","m/s","1499.54","C","1.81","m","2531.77","dbar","25
71.75","ppt","35.128","m/s","1500.05","C","1.81","m","113.53","m","2546.26","deg","47.461","μ mol","112.41","μ mol","131.936","μ
mol","109.821","%","25.42","%","32.89","%","30.393","m","2534.51","ddeg","9.082461","ddeg","-87.095706","deg","15.3","ddeg","9.0835
33","ddeg","-87.096672"
"65750c68825e0fc2f23cf512","FKt231202","S0626","2023-12-10T00:55:04.447Z","OBSERVATION","sergiocambro","ctenophore\n","Other
Organism","biology","uS/cm","3.14","m","2537.5","dbar","2567.44","ppt","34.659","m/s","1499.54","C","1.81","m","2531.77","dbar","25
71.75","ppt","35.128","m/s","1500.05","C","1.81","m","113.53","m","2546.26","deg","47.461","μ mol","112.41","μ mol","131.936","μ
mol","109.821","%","25.42","%","32.89","%","30.393","m","2534.51","ddeg","9.082461","ddeg","-87.095706","deg","15.3","ddeg","9.0835
33","ddeg","-87.096672"

Sealog
● What is it?

● What's special about
it?

3rd Party integration:

Allow other systems to add
ancillary data or events:
● Frame grabbers
● InfluxDB
● UDP feeds

Allows Sealog to control other
systems:
● Video loggers
● Data acquisition systems
● Social media feeds

Sealog Installations

Sealog
● Introduction
● Lingo 101
● System overview
● Backend Services
● Best practices
● Contributing
● Where to from here?

Lingo 101 Events

An ‘event’ is any scientific or
operational observation not
already directly captured by other
data logging systems.

Sealog events are comprised of a
timestamp, author, a high-level
value, optional free-form text and
an optional list of related
observational information.

{
 "event_value": "SAMPLE",
 "event_free_text": "",
 "ts": "2024-09-03T14:05:00.153Z",
 "event_author": "mpf",
 "id": "66d7178c5fe4c2fab0fdaf85"
}

Lingo 101
Event Comments

Event comments are special case of
observational information.

Added to all event records as a space
for users to add additional information
after the event is submitted.

Event comments can be used for:

● Recording that an observation is
incorrect

● Additional observations not included in
the original event submission

● Preliminary notes on the importance of
an event

Lingo 101
Ancillary Data

Addition data that is not observational
but is important to associate with the
event: vessel position, sensors data, etc.

● Multiple ancillary data records can
be associated with an event.

● Events are not required to have the
same type/number of ancillary
data records

● Ancillary data can be added at the
time the event is created or as part
of a post-processing workflow.

{
 "id": "5a7341898c1553258f703ce0",
 “event_id": "5981f167212b348aed7fa9f6",
 "data_source": "datagrabber",
 "data_array":
 [
 {
 "data_name": "latitude",
 "data_value": "41.342981",
 "data_uom": "ddeg"
 },
 {
 "data_name": "longitude",
 “data_value": "-170.236345",
 "data_uom": "ddeg"
 },
 {
 "data_name": "depth",
 "data_value": "943.2",
 "data_uom": "meters"
 },
 {
 "data_name": "heading",
 "data_value": "75.2",
 "data_uom": "deg"
 }
]
}

Lingo 101
Cruises/Lowerings

Sealog event data is not internally
organized by cruise. Cruise information
is stored as separate records.

These records include an ID, start time,
stop time, and other metadata such as
location and description.

These records are used when reviewing
or exporting data to extract events
based on event timestamps.

The same approach is used for
lowerings

Lingo 101
Event Templates

Event templates are records that define
the related observational data points
that should be captured when
submitting a particular event type.

In the case of the sample event, the
“SAMPLE” event template would
prompt the user for the following data
points:
● Sample ID
● Sample type
● Storage location.

Sealog
● Introduction
● Lingo 101
● System overview
● Backend Services
● Best practices
● Contributing
● Where to from here?

Installation

Installation instructions available at:
● http://www.oceandatatools.org/sealog-docs/server_install/
● http://www.oceandatatools.org/sealog-docs/client_install/

Built for Ubuntu but can be run on RHEL and Rocky

Can also be run as containerized deployment

http://www.oceandatatools.org/sealog-docs/server_install/
http://www.oceandatatools.org/sealog-docs/client_install/

Code Orientation
sealog-server/
├── config
├── demo
├── misc
│ ├── influx_sealog
│ ├── python_sealog
├── routes
├── Dockerfile
├── docker-compose.yml

sealog-client/
├── src
│ ├── components
│ ├── client_settings.js
│ ├── map_tilelayers.js
├── webpack.config.js
├── Dockerfile
├── docker-compose.yml

The Web UI

The Web UI

Main Event-Logging Screen

● Navigation Bar
● Event templates (blue buttons),
● Free-form text field,
● Recent event history,
● Sealog Auto-Snapshot (ASNAP)

service status

The Web UI

Reviewing Events

The Web UI

Reviewing Events

Replay: VLC-style controls and a slider for
scanning through a cruise/lowering. All
associated data for a given event is displayed
including previews of image data
(vehicle-version only).

Map: Similar to Replay and Review but with a
focus on the position where the event was
created. This interface includes a map of the
lowering trackline and a slider for quickly
scanning through the lowering.

The Web UI

Searching Events

Filter form to query events by text, author
or time.

The search form is case insensitive and
supports partial matches.

Use commas between event values to
search for multiple event values (i.e.
FISH, CORAL).

Adding a ! prefix performs a logical NOT
operation.

The Web UI

Exporting Events

● Use the download icon

● Clicking the download icon will
display options for exporting the
event data with/without ancillary data
in JSON or CSV format.

The Web UI

System Management

● Event Templates

● Cruises

● Users

The Web UI

Event Templates

Elements
● Text
● Radio
● Checkboxes
● Require/Optional
● Custom Timestamps

Not shown Elements
● Static Text

The Web UI

Event Templates
● System vs Non-System
● Editing/Adding
● Permissions
● Importing

The Web UI

Event Templates

The Web UI

Event Templates

The Web UI

Event Templates

The Web UI

Event Templates - Best Practices

● Think about how the data is used… (it’s
likely Excel)

● Use concise event_option names

● Reuse event_option names to minimize
the number of columns in the output

● Use the FreeText field

event_value -> event_option: value, ...
--
Cruise -> Status: Start of Cruise
Cruise -> Status: Leaving EEZ
Cruise -> Status: Entering EEZ
Cruise -> Status: End of Cruise

Seawater -> Status: Enabled pump
Seawater -> Status: Pump Secured

Multibeam -> Status: Start of Survey, System: EM712
Multibeam -> Status: Setting Change, System: EM712 *
Multibeam -> Status: End of line, System: EM712
Multibeam -> Status: Start of line, System: EM712
Multibeam -> Status: End of Survey, System: EM712
Multibeam -> Status: Applied SSP, System:
EM712;EM124

Problem -> System: ADCP *
Problem -> System: CTD *
Problem -> System: EM712 *
Problem -> System: Seawater *
Problem -> System: Winch *

*(Free_form field required)

The Web UI

Cruises

The Web UI

Cruises
● Edit
● Hide
● Delete
● Copy to clipboard
● Export
● Permissions

The Web UI

Cruises

The Web UI

Cruises

The Web UI

Users
● System vs Non-System
● Editing/Adding
● Permissions
● Importing

The Web UI

OpenAPI Web-UI

Sealog
● Introduction
● Lingo 101
● System overview
● Backend Services
● Best practices
● Contributing
● Where to from here?

Ok, time to grab a snorkel…

● Setup JWT Authentication/Authorization
● Setup ASNAP
● Setup AutoActions
● Setup InfluxDB integration
● Setup Data Export

Backend Services

Authorization/Authentication

● Most communication with Sealog
Server requires some level of
authorization/authentication

● This is handled via Javascript Web
Token (JWT)

● Obtaining JWT for desired privileged
user

Backend Services

Setup Authentication for Services

● Create settings.py
cp ./misc/sealog_asnap.py.dist
./misc/sealog_asnap.py

● Add JWT to settings.py

API_SERVER_URL = 'http://localhost:8000/sealog-server'
WS_SERVER_URL = 'ws://localhost:8000/ws'

CRUISES_API_PATH = '/api/v1/cruises'

CUSTOM_VAR_API_PATH = '/api/v1/custom_vars'

EVENTS_API_PATH = '/api/v1/events'

EVENT_AUX_DATA_API_PATH = '/api/v1/event_aux_data'

EVENT_EXPORTS_API_PATH = '/api/v1/event_exports'

EVENT_TEMPLATES_API_PATH = '/api/v1/event_templates'

LOWERINGS_API_PATH = '/api/v1/lowerings'

API_SERVER_FILE_PATH = '/data/sealog-files'

TOKEN = ''

HEADERS = {
 'Authorization': 'Bearer ' + TOKEN
}

Backend Services

ASNAP Service

What is ASNAP?

ASNAP (Automatic Snapshot)

● Background process that when
enabled submits an ASNAP event
to the server.

● Ensures a minimum resolution of
events

{
"event_value": "ASNAP",
"event_free_text": ""

}

ASNAP Service

Make a copy of the distributed version

cp ./misc/sealog_asnap.py.dist
./misc/sealog_asnap.py

Modify default behavior
DEFAULT_INTERVAL = 10 # seconds

ASNAP_EVENT = {
"event_value": "ASNAP",
"event_options": [],
"event_free_text": ""

}

Backend Services

ASNAP Service

Supervisor to start service at boot

sudo vim /etc/supervisor/conf.d/sealog-server.conf

[program:sealog-asnap]
directory=/opt/sealog-server/misc
command=/opt/sealog-server/venv/bin/python
sealog_asnap.py
redirect_stderr=true
stdout_logfile=/var/log/sealog-asnap_STDOUT.log
user=sealog
autostart=true
autorestart=true
stopsignal=QUIT

Backend Services

AutoAction Service

What is AutoActions?

Auto-Actions

● Auto-Actions is a service that
triggers additional actions based on
submitted events.

● Most common example of
AutoAction is turning on/off
ASNAP

● Can be used to communicate with
other systems

Backend Services

AutoActions Service

Make a copy of the distributed version

cp ./misc/sealog_auto_actions.py.dist
./misc/sealog_auto_actions.py

Modify default behavior

--
For vessel-focused sealog instances
--
INCLUDE_SET = ('CRUISE')

ASNAP_LOOKUP = {
'Start of Cruise': 'On',
'End of Cruise': 'Off'

}
--

Backend Services

AutoActions Service

 Defining the behavior

def _handle_cruise_event(event):
'''
The function handle auto actions for the CRUISE event_value.

 It uses the included event_options to set the ASNAP status.
'''

if event['event_value'] != 'CRUISE':
 return

status = None

if event has status event_option, pass status to
_set_asnap
for option in event['event_options']:

 if option['event_option_name'] == "status":
 milestone = option['event_option_value']
 break

if status is not None:
 _set_asnap(status)

Backend Services

AutoActions Service def _set_asnap(evt_status):
'''
Sets the ASNAP status variable based on the evt_status
'''

if evt_status not in ASNAP_LOOKUP, return
if evt_status not in ASNAP_LOOKUP:
 return

Get the UID for the ASNAP custom_var
asnap_status_var_uid =

get_custom_var_uid_by_name(ASNAP_STATUS_VAR_NAME)

logging.info("Setting ASNAP to %s", ASNAP_LOOKUP[evt_status])
set_custom_var(asnap_status_var_uid, ASNAP_LOOKUP[evt_status])

 Defining the behavior
Backend Services

AutoActions Service

 Listening for events

async def auto_actions():
 '''
 Listen to the new and updated events and respond as instructed based on the
 event and it's options
 '''

 try:
 async with websockets.connect(WS_SERVER_URL) as websocket:

 await websocket.send(json.dumps(HELLO))

 while True:

 msg = await websocket.recv()
 msg_obj = json.loads(msg)

 if msg_obj['type'] and msg_obj['type'] == 'ping':
 await websocket.send(json.dumps(PING))

 elif msg_obj['type'] and msg_obj['type'] == 'pub':

 event = msg_obj['message']
 logging.debug("Event: \n%s", json.dumps(event, indent=2))

 if event['event_value'] not in INCLUDE_SET:
 logging.debug("Skipping because event value is not in the include set")
 continue

 _handle_cruise_event(event)

 except Exception as exc:
 logging.error(str(exc))

Backend Services

AutoActions Service

Connecting to the server and starting the
service

Run the main loop
while True:

 # Wait 5 seconds for the server to complete startup
 time.sleep(5)

 try:
 logging.debug("Listening to event websocket feed...")
 asyncio.get_event_loop().run_until_complete(auto_actions())
 except KeyboardInterrupt:
 logging.error('Keyboard Interrupted')

 try:
 sys.exit(0)
 except SystemExit:
 os._exit(0) # pylint: disable=protected-access
 except Exception as exc:
 logging.error("Lost connection to server, trying again in 5
seconds")
 logging.debug(str(exc))

Backend Services

AutoActions Service

Supervisor to start service at boot

sudo vim /etc/supervisor/conf.d/sealog-server.conf

[program:sealog-auto-actions]
directory=/opt/sealog-server/misc
command=/opt/sealog-server/venv/bin/python
sealog_auto_actions.py
redirect_stderr=true
stdout_logfile=/var/log/sealog-auto-actions_STDOUT.log
user=sealog
autostart=true
autorestart=true
stopsignal=QUIT

Backend Services

Ability to create aux_data records using
data pulled from the InfluxDB time series
database.

Sealog events can be created with
timestamps in the past and still have the
correct ancillary data associated.

Backend Services

InfluxDB Integration

What is it?

InfluxDB Integration

Usage Statement

usage: sealog_aux_data_inserter_influx.py [-h] [-v] [-f CONFIG_FILE] [-n] [-e EVENTS] [-c CRUISE_ID]
Aux Data Inserter Service - InfluxDB

options:
 -h, --help show this help message and exit
 -v, --verbosity Increase output verbosity
 -f, --config_file CONFIG_FILE
 use the specified configuration file
 -n, --dry_run compile the data but do not push to server
 -e, --events EVENTS list of event_ids to apply the influx data
 -c, --cruise_id CRUISE_ID cruise_id to fix aux_data for

Backend Services

InfluxDB Integration

Setup

InfluxDB settings
INFLUXDB_URL = 'http://localhost:8086'
INFLUXDB_ORG = 'openrvdas'
INFLUXDB_BUCKET = 'openrvdas'
INFLUXDB_AUTH_TOKEN = 'DEFAULT_INFLUXDB_AUTH_TOKEN'
INFLUXDB_VERIFY_SSL = False

Backend Services
● Requires active InfluxDB Server that

Sealog can access via network

● Setup ./misc/influx_sealog/settings.py

 *file is identical to ./database/influxdb/settings.py

● Create sealog_aux_data_inserter_influx.py
cp sealog_aux_data_inserter_influx.py.dist
sealog_aux_data_inserter_influx.py

InfluxDB Integration

Configuration
● Inline
● External file

INLINE_CONFIG = '''
- data_source: realtimeVesselPosition
 query_measurements:
 - seapath1
 aux_record_lookup:
 S1HeadingTrue:
 name: heading
 uom: deg
 round: 3
 S1Latitude:
 name: latitude
 uom: ddeg
 round: 6
 modify:
 - test:
 - field: S1NorS
 eq: "S"
 Operation:
 - multiply: -1
 S1Longitude:
 name: longitude
 uom: deg
 round: 6
 modify:
 - test:
 - field: S1EorW
 eq: "W"
 Operation:
 - multiply: -1
 S1NorS:
 no_output: true
 S1EorW:
 no_output: true
'''

Backend Services

InfluxDB Integration

sudo vim /etc/supervisor/conf.d/sealog-server.conf

[program:sealog-aux-data-influx]
directory=/opt/sealog-server
command=/opt/sealog-server/venv/bin/python ./misc/sealog_aux_data_inserter_influx.py
-f ./misc/sealog_influx_embed.yml
redirect_stderr=true
stdout_logfile=/var/log/sealog-aux-data-influx_STDOUT.log
user=sealog
autostart=true
autorestart=true
stopsignal=QUIT

Backend Services

Supervisor to start service at boot

Export data from Sealog Database to file:

● Cruise Record
● Events w/ Aux Data (csv, json)
● Events w/o Aux Data (csv, json)
● Aux Data (json)

Backend Services

Data Export Service

What does it entail?

Typically used with vehicles:

● Crop OpenRVDAS data to match the
start/stop of a dive

● Organize/Export Images

● Build navigational products:
(GeoJSON/KML/CSV)

● Build reports

Backend Services

Data Export Service

What else could it entail?

Data Export

Usage Statement

usage: sealog_data_export.py [-h] [-v] [-n] [-t] [-C CRUISE_ID]

Sealog Data Export Utility

options:
 -h, --help show this help message and exit
 -v, --verbosity Increase output verbosity
 -n, --no_transfer build reports and export data but do not push to data warehouse
 -t, --transfer_only only push the exported data to data warehouse
 -C, --cruise_id CRUISE_ID
 export all cruise data for the specified cruise (i.e. FK200126)

Backend Services

Data Export

Repo includes two versions
● Vessel-focused
● Vehicle-focused

Location of exported files.
EXPORT_ROOT_DIR = '/data/sealog-exports'

Name of the vessel. This is used in filenames and shouldn't
include spaces or special characters.
VESSEL_NAME = 'Discoverer'

Backend Services

Location of exported files.
EXPORT_ROOT_DIR = '/data/sealog-exports'

Name of the vehicle. This is used in filenames and shouldn't
include spaces or special characters.
VEHICLE_NAME = 'Deep_Discoverer'

-c, --current_cruise export the data for the most recent cruise
-L, --lowering_id LOWERING_ID
 export data for the specified lowering

Data Export

try:
 filename = _cruise_file_prefix(cruise) + '_cruiseRecord.json'
 dest_filepath = os.path.join(cruise_dir, filename)
 logging.info("Export cruise Record: %s", filename)

 with open(dest_filepath, 'w', encoding="utf-8") as file:
 file.write(json.dumps(cruise))

 except Exception as exc:
 logging.error('could not create data file: %s', dest_filepath)
 logging.debug(str(exc))

try:
 filename = _cruise_file_prefix(cruise) + '_eventOnlyExport.json'
 dest_filepath = os.path.join(cruise_dir, filename)
 logging.info("Export Events (json-format): %s", filename)

 with open(dest_filepath, 'w', encoding="utf-8") as file:
 file.write(json.dumps(get_events_by_cruise(cruise['id'])))

Backend Services
def _cruise_file_prefix(cruise):
 """
 helper function used to build the filename prefix for all
 Cruise-related data files.
 """

 # Prepend the with the cruise and vessel name
 # --
 return f"{cruise['cruise_id']}_{VESSEL_NAME}"

Sealog
● Introduction
● Lingo 101
● System overview
● Backend Services
● Best practices
● Contributing
● Where to from here?

Best Practices
http://www.oceandatatools.org/sealog-docs/

Sealog
● Introduction
● Lingo 101
● System overview
● Backend Services
● Best practices
● Contributing
● Where to from here?

● Bug reports/feature requests:
https://github.com/OceanDataTools/sealog-server/issues

https://github.com/OceanDataTools/sealog-client-vessel/issues

https://github.com/OceanDataTools/sealog-client-vehicle/issues

Because sharing is caring! ❤

Contributing to Sealog

https://github.com/OceanDataTools/sealog-server/issues
https://github.com/OceanDataTools/sealog-client-vessel/issues
https://github.com/OceanDataTools/sealog-client-vehicle/issues

Where to from here?

Where to from here?

● Shore-side replication

● Cloud-services integration

● Integration with 3rd party services

