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Crustal-scale imaging of subduction zones
with 2D and 3D active-source seismic data

Tanner Acquisto




Structural and compositional controls on variable megathrust slip behavior inferred from a 3D, crustal-scale,

P-wave velocity model of the Alaska Peninsula subduction zone EIF'%EEI @

*contact:acquisto@ig.utexas.edu Tanner Acquisto™, Anne Bécel?, Juan Pablo Canales?®, Eric Beaucé? Download our

—>
"Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA paper herel LE -
2Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA E
*Department of Geology and geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
; Results |
— {————————|Alaska subduction zone | Results Discussion

Vp sl:cei.; t:ﬁnch;eilflle Seamounts, platform and sediment thickness

Westorn. Eastorn SWKodiak
semat

- b =0 2

nl®

* Friday afternoon,
13h40-17h30.

+ Few bend faults outboard SW Kodiak.
+ Seamounts and platform likely i to plate hydration and

° 3 D C r u Sta l_ S Ca le Vp The Alaska Peninsula subduction zone exhibits remarkable variations in megathrust properties, the

timing and style of large earthquakes, and seismicity. Although marine geophysical methods provide in-
sights into subduction zone structures, most surveys consist of sparse 2D profiles, limiting our under-

standing of first-order controls. To better undertstand what controls these along-strike and
l I l O e O a S a down-dip variations, we perform 3D P-wave (Vp) graphy using acti' ismic data
C i ismic E:

acquired as part of the Alaska A ibi peril (AACSE)
subduction zone. [Data & Methods|

sediment distribution across the Pacific plate.

Slab velocities, backstop morphology & partitioning
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AACSE active-source
data »

* Reveals structural and
compositional changes
in both plates that could

« Slight Vp reductions in western - Elevated slab Vp where large slip took place during
Semidi where a SSE (2018) & post- 1964 Great Alaska and 2021 Chignik.
seismic slip took place (2021).

+ SW Kodiak: Shallow updip backstop limit and wider dynamic backstop (> 100 km).
Vp slices: depth Incoming plate averages & sediment thickness « E. Semidi: Shallow updip backstop limit, diffuse backstop proxy {subducting relief?)
—— asern rosws Wstem en P + W. Semidi: deeper updip backstop limit and thinner dynamic backstop (< 50
help exp [a in d iffere nt e - S L N S S L km) where slow siip occurred in 2018.

Upper plate structure

Prre N

megathrust behaviors.

* Recently published in
JGR: Solid Earth
(Acquisto et al., 2024)

+ W. Semidi: Elevated Vp and abundant reflections directly above 2021 Chignik
rupture area. Could suggests a link between the backstop composition and slip
localization during large earthquakes.

Gravity & magnetic anomalies

) MOdel available for N TEE « Evidence for modest (E. Semidi & SW Kodiak) f lticino (W.
download on the MGDS. j | il S

Download our model here!
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Water content of the Young, Incoming Cocos Plate outboard of the Guerrero Gap and Neighboring Segments at the Middle
America Trench offshore Mexico
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Upper crustal porosity & water content Lower crustal & upper mantle porosity & water content
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* Constraints on water o o
Subducting water carried in the incoming .uam mmy Muenm megthrust siip behavior once released

content of the Cocos plate |Esimazttmers

the incoming plate remains unknown. Here we use multichannel seismic (MCS) and ocean-bottom
seismometer data to constrain the structural and pore water content of the incoming oceanic

outboard the Middle ”“ht&”d""”
America Trench, Mexico.

* Most of the water is stored in
the upper crust, whereas the
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Main takeaways:

* Layer 2 is hydrated (more H,0** than H,0"“%), lower
crust and mantle are dry.

« Petrologic models assume larger quantities of H,0*"* and
typically do not consider H,0%.
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Layer thickness and average Vp
Guerrero Gap

Crriteson et l. (2019)
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Oceanic Tayer

Northwestern segment (Guerrero):
+ ~30% more water is subducting there.

§ + Higher H,0% could help explain shallow aseismic siip
lower crust and mantle are el e e
H on iding plate structure, properties, and
. | deformation are still needed!
relatively dry. TR T | [souteastem segman:
_ + Upper crust is still hydrated, slightly lesser extent.
s 23 VeiLe ""d Mangs . + Could smoother basement topography and slightly thicker
'§ ﬁ $ e earvorove 1 sediments contribute to plate locking?
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Future Work
inversion:
+ Explore the tradeoff between velocity Porosity and water content estimation:
and Moho depth. » Explore different alteration mineral assem-
+ Resolution tests blages (Table 1).

+ Compare to independent OBS and MCS re-
* Vp uncertainty (Monte-Carlo)

sult
« Tie with intersecting MCS/OBS profiles  + Use full model instead of layer averages.

+ Crustal ansotropy? « Account for plate bending/faulting (mac-
+ Quantify upper mantle anisotropy 1o-porosities)?
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