Observation Project: Tracing Oceanic Asthenosphere Subduction

and Current Status of Japanese BBOBS Projects

Nozomu Takeuchi (ERI, University of Tokyo, JAPAN)

Purpose of the Project

Direct observation of trapped energy in the subducting asthenosphere.

Current Understanding for Mantle Convection

- coupling between lithosphere and asthenosphere -

Plate motion is surface manifestation of mantle convection. However, we still do not understand the relation (coupling) between the lithosphere (surface) and the asthenosphere (internal).

Current Understanding for Mantle Convection - coupling between lithosphere and asthenosphere -

Plate motion is surface manifestation of mantle convection. However, we still do not understand the relation between the lithosphere (surface) and the asthenosphere (internal).

Motivation

Observations

trench-parallel fast axis in the subslab regions

indirect observations and inconsistent interpretations

(1) Interpretation 1: trench parallel flow

(2) Interpretation 2: subduction of anisotropic asthenosphere

Song & Kawakatsu (2012)

Motivation

Limited resolution due to lack of deep seismicity. More pronounced signatures are desired.

Hawley et al. (2016, Science)

New BBOBS Project to Trace the Asthenospheric Subduction

Proposed BBOBS Array 45° 40°

150

Extension of the "Kiban" network to the outer-rise

all-purpose geophysical network

(1) First Japanese geophysical array with larger aperture

(2) Useful for various scientific targets

- origin of the land-ocean contrasts
- along-arc heterogeneities and subcution volcanisms
- in-situ seismic/tsunami observations for mega-thrust events

★ "Kiban" Stations

145°

★ Previous BBOBS Stations

155°

160°

☆ New Stations

140°

Assumed Structure Model

subducting asthenosphere model

stagnant asthenosphere model

- Modified JSVISM model (Koketsu et al. 2008, 2012)
- Realistic models with several simplifications
 - Mimics the subduction at the Tohoku region
 - stack of homogeneous layers with undulated boundaries
 - sea water layer (5 km thick) with flat bathymetry
 - crust (7 km thick) with flat Moho
 - subducting oceanic crust into the transition zone

Comparison of the Synthetic Seismograms

displacement (8 s-)

Comparison of the Synthetic Seismograms

Wave-Front Propagations for the Subducting Asthenosphere Model

displacement (12.5-100 s)

displacement (12.5-100 s)

displacement (12.5-100 s)

displacement (12.5-100 s)

Oldest Arrays (Oldest-1 & Oldest-2)

Oldest-1 (2018-2019) Japan & Korea

12 stations

Oldest-2 (2022-2023) Japan & Taiwan

15 stations

Complex Anisotropy in the Oldest Ocean

Kawano et al. (2023, JGR)

Heterogeneities in the Asthenosphere

Kang et al. (2023, G-cubed)

Hawaii-Emperor Bend (HEB) project

- Japan-Germany collaborated research
- 50 BBOBSs & 50 OBEMs
- 2025.10 deply. R/V Hakuho-maru
- 2026.04 recover R/V Sonne
- Constrain the viscosity of oceanic asthenosphere from integration of seismological and electromagnetic observations and geodynamic modeling

